Embryo and larvae development of Nilem Fish, Osteochilus vittatus reared in batik liquid waste




Abstract. Nugrahesthi GH, Wijayanti GE, Habibah AN. 2023. Embryo and larvae development of Nilem Fish, Osteochilus vittatus reared in batik liquid waste. Nusantara Bioscience 15: 105-112. The embryonic and larval stages are critical phases of an organism's development. For aquatic organisms, development is affected by environmental factors such as liquid waste. A batik liquid waste is a waste product of the textile industry usually streamed directly into the aquatic environment. This study aimed to observe the effects of exposure to batik liquid waste effects on developing Nilem (Osteochilus vittatus Valenciennes, 1842) fish embryos and larvae. The research was conducted using a completely randomized design. One hundred two-celled embryos were kept in batik liquid waste with dilution concentrations of 0% (the control), 5%, 10%, 15%, and 20% of water until the age of 4 days after hatching with five replications. The time of embryo evaluation was 60th minutes, 120th minutes, and 180th minutes after fertilization; the larval stage evaluation time was the 24th, 48th, 72nd, and 96th hour after fertilization; five embryos were evaluated for each replication. The results showed that embryo exposure to batik liquid waste affected the height of the blastoderm embryo, accumulation of waste in the chorion of the embryo, deceleration of embryonic development, increased larval abnormalities, decreased the survival rate of larvae, and acceleration of yolk absorption of fish larvae. Embryos were successfully hatched and produced larvae only in the control and 5% batik liquid waste medium. Batik liquid waste interfered with O. vittatus embryo development and generated mortality above 5%.


Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J. 2022. A critical review on the treatment of dye-containing wastewater: Eco-toxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231: 113160. DOI: 10.1016/j.ecoenv.2021.113160.
Ariyanti D, Purbasari A, Widiyanti M. 2021. Performance of Free Standing TiO2 Nanostructures (FSTNS) photocatalysis for batik industry wastewater treatment. IOP Conf Ser: Mater Sci Eng 1053: 012057. DOI: 10.1088/1757-899X/1053/1/012057.
Braunbeck T, Boettcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N. 2005. Towards an alternative for the acute fish LC(50) test in chemical assessment: The fish embryo toxicity test goes multi-species -- an update. ALTEX 22 (2): 87-102.
Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R. 2014. The Fish Embryo Test (FET): Origin, applications, and future. Environ Sci Pollut Res Intl 22 (21): 16247-16261. DOI: 10.1007/s11356-014-3814-7.
Cao N, Yang M, Zhang Y, Hu J, Ike M, Hirotsuji J, Matsui H, Inoue D, Sei K. 2009. Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci Total Environ 407 (5): 1588-1597. DOI: 10.1016/j.scitotenv.2008.10.048.
Dahlke F, Lucassen M, Bickmeyer U, Wohlrab S, Puvanendran V, Mortensen A, Chierici M, Pörtner HO, Storch D. 2020. Fish embryo vulnerability to combined acidification and warming coincides with a low capacity for homeostatic regulation. J Exp Biol 223 (Pt 11): jeb212589. DOI: 10.1242/jeb.212589.
Dailin, DJ, Nordin NZ, Tan LT, Ramli S, Chuah LF, Sapawe N, Jusoh YMM, Zaidel DNA, Sukmawati D, El-Enshasy H. 2022. State of the art bioremediation of textile dye in wastewater: A review. Biosci Res 19 (2): 914-924.
Daud NM, Abdullah SRS, Hasan HA, Ismail NI, Dhokhikah Y. 2022. Integrated physical-biological treatment system for batik industry wastewater: A review on process selection. Sci Total Environ 819: 152931. DOI: 10.1016/j.scitotenv.2022.152931.
De Oliveira GAR, de Lapuente J, Teixidó E, Porredón C, Borràs M, de Oliveira, DP. 2016. Textile dyes induce toxicity on zebrafish early life stages. Environ Toxicol Chem 35 (2): 429-434. DOI: 10.1002/etc.3202.
Feitosa NM, Calderon EN, da Silva RN, de Melo SLR, Souza-Menezes J, Nunes-da-Fonseca R, Reynier MV. 2021. Brazilian silverside, Atherinella brasiliensis (Quoy & Gaimard,1825) embryos as a test-species for marine fish eco-toxicological tests. PeerJ 9: e11214. DOI: 10.7717/peerj.11214.
Habibah AN, Pertiwi RPC, Sulistyo I. 2022. Toksisitas limbah cair batik terhadap perkembangan embrio ikan nilem (Osteochilus vittatus). Prosiding Pengembangan Sumber Daya Perdesaan dan Kearifan Lokal Berkelanjutan XI. Purwokerto, 12-13 Oktober 2021. [Indonesian]
Häder DP, Erzinger GS. 2018. Bioassays: Advanced Methods and Applications. Elsevier, Amsterdam, Netherlands.
Häder DP, Helbling EW, Villafañe VE. 2021. Anthropogenic Pollution of Aquatic Ecosystems. Springer Cham, New York. DOI: 10.1007/978-3-030-75602-4.
Hallare AV, Schirling M, Luckenbach T, Köhler HR, Triebskorn R. 2005. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30 (1): 7-17. DOI: 10.1016/j.jtherbio.2004.06.002.
Handayani W, Widianarko B, Pratiwi AR. 2021. The water use for batik production by batik SMEs in Jarum Village, Klaten Regency, Indonesia: What are the key factors? IOP Conf Ser: Earth Environ Sci 716 (012004): 1-12. DOI: 10.1088/1755-1315/716/1/012004.
Henn K, Braunbeck T. 2011. Dechorionation as a tool to improve the Fish Embryo Toxicity Test (FET) with the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 153 (1): 91-98. DOI: 10.1016/j.cbpc.2010.09.003.
Indrayani L, Triwiswara M, Andriyati W, Nuraini E. 2020. Peningkatan kualitas batik eco-fashion dengan pewarna alami jalawe (Terminalia bellirica) menggunakan iradiasi berkas elektron. Jurnal Ilmiah Aplikasi Isotop dan Radiasi 16 (2): 91-100. 10.17146/jair.2020.16.2.5964. [Indonesian]
Krzykwa JC, Olivas A, Jeffries MKS. 2018. Development of cardiovascular and neurodevelopmental metrics as sublethal endpoints for the Fish embryo toxicity test. Environ Toxicol Chem 37 (10): 2530-2541. DOI: 10.1002/etc.4212.
Küçüko?lu M, Binokay US, Pekmezekmek AB. 2013. The effects of zinc chloride during early embryonic development in zebrafish (Brachydanio rerio). Turk J Biol 37 (2): 158-164. DOI: 10.3906/biy-1203-27.
Long Y, Li Q, Cui Z. 2011. Molecular analysis and heavy metal detoxification of ABCC1/MRP1 in zebrafish. Mol Biol Rep 38 (3): 1703-1711. DOI: 10.1007/s11033-010-0283-z.
Mariska A, Muslim, Fitrani M. 2013. Yolk adsorption rate of kissing gouramy fish (Helostoma temminckii C.V) at different incubation temperature. Jurnal Akuakultur Rawa Indonesia 1 (1): 34-45. DOI: 10.36706/jari.v1i1.1777. [Indonesian].
Mukti AT. 2005. Perbedaan keberhasilan tingkat poliploidisasi Ikan Mas (Cyprinus carpio Linn.) melalui kejutan panas. Berk Penel Hayati 10 (2): 133-138. DOI: 10.23869/bphjbr.10.2.20058. [Indonesian]
Muslimah E, Alawiyah NN, Soeparman S, Yanuwiyadi B, Riniwati H. 2020. Waste reduction in green productivity in small and medium-sized enterprises of Kampoeng Batik Laweyan. Intl J Emerg Trends Eng Res 8 (6): 2360-2364. DOI: 10.30534/ijeter/2020/25862020.
Nasrin T, Saha AK, Mohanta MK, Chaity AS, Alam J, Shawon MH, Haque F. 2022. Reduction of toxic effects of textile dye, basic red-18 on tilapia fish by bioremediation with a novel bacterium, Mangrovibacter yixingensis strain AKS2 isolated from textile wastewater. Ann Res Rev Biol 37 (11): 12-29. DOI: 10.9734/ARRB/2022/v37i1130544.
Nisha JC, Sekar RRJ, Lazarus S, Singh JCH. 2020. Effect of chromium trivalent (cr-iii) and hexavalent (cr-vi) toxicity on the morphology of zebra fish, Danio rerio (F. Hamilton, 1822) during early embryonic developmental stages. UGC Care J 40: 74. https://oa.mg/work/3019325524.
O’Farrell PH. 2015. Growing an embryo from a single cell: A hurdle in animal life. Cold Spring Harb Perspect Biol 7 (11): a019042. DOI: 10.1101/cshperspect.a019042.
Oedjijono, Lestari S, Samsudin LS, Hermilia. 2021. Bioremediation of batik wastewater by Rhizobacteria isolated from iron sand soils tolerant of Pb and Zn. Biodiversitas 23: 299-305. DOI: 10.13057/biodiv/d230136.
Olaniyi WA, Omitogun OG. 2013. Stages in the early and larval development of the African catfish Clarias gariepinus (Teleostei, Clariidae). Zygote 22 (3): 314-330. DOI: 10.1017/S0967199413000063.
Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D. 2008. The zebrafish embryo model in environmental risk assessment - applications beyond acute toxicity testing. Environ Sci Pollut Res Intl 15 (5): 394-404. DOI: 10.1007/s11356-008-0018-z.
Simanjuntak SBI, Wijayanti GE. 2005. Penggunaan hormon untuk inkubasi pemijahan Ikan Nilem (Osteochilus hasselti). Prosiding Seminar Nasional Biologi dan Akuakultur Berkelanjutan. Universitas Jenderal Soedirman, Purwokerto. [Indonesian].
Von Hellfeld R, Brotzmann K, Baumann L, Strecker R, Braunbeck T. 2020. Adverse effects in the Fish Embryo acute Toxicity (FET) test: A catalogue of unspecific morphological changes versus more specific effects in zebrafish (Danio rerio) embryos. Environ Sci Eur 32 (1): 122. DOI: 10.1186/s12302-020-00398-3.
Widianarko B, Handayani W, Pratiwi AR. 2021. Blue water footprint and grey water footprint assessment of block-printed batik-making process coloured by indigo (Indigofera sp.), tingi (Ceriops sp.) and mahogany (Swietenia sp.) dyes. Asian J Water Environ Pollut 18 (4): 1-7. DOI: 10.3233/AJW210037.
Wiegand C, Pflugmacher S, Oberemm A, Meems N, Beattie KA, Steinberg CEW, Codd GA. 1999. Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ Toxicol 14 (1): 89-95. DOI: 10.1002/(SICI)1522-7278(199902)14:1<89::AID-TOX12>3.0.CO;2-7.
Windari T. 2013. Androgenesis dihasilkan dari berbagai lama iradiasi ultraviolet dan berbagai waktu kejut panas pasca fertilisasi pada telur Ikan Nilem (Osteochilus hasselti CV). Jurnal Perikanan 15 (1): 1-9. DOI: 10.22146/jfs.9098. [Indonesian]
Wirosoedarmo, Ruslan, Suharto, Bambang, Wardana, Kusuma P. 2019. Evaluasi Kinerja Derah Irigasi Berdasarkan Teknik Pemberian Air di Jatimlerek, Plandaan, Kabupaten Jombang. Universitas Brawijaya, Malang. DOI: 10.21776/ub.jsal.2019.006.02.4. [Indonesian]
Wlodkowic D, Campana O. 2021. Toward high-throughput fish embryo toxicity tests in aquatic toxicology. Environ Sci Technol 55 (6): 3505-3513. DOI: 10.1021/acs.est.0c07688.
Wulandari V, Yudha IG, Effendi E. 2020. Study on the development and growth of larvaes of tiger grouper Epinephelus fuscoguttatus (Forskal, 1775) at different media temperatures. Jurnal Rekayasa dan Teknologi Budidaya Perikanan 9 (1): 1039-1046. DOI: 10.23960/jrtbp.v9i1.p1039-1046. [Indonesian]
Xu Y, Wang L, Zhu J, Jiang P, Zhang Z, Li L, Wu Q. 2021. Neurotoxicity by altering metabolism in zebrafish larvae. Ecotoxicol Environ Saf 228: 112983. DOI: 10.1016/j.ecoenv.2021.112983.
Zhang T, Zhou XY, Ma XF, Liu JX. 2015. Mechanism of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos. Aquat Toxicol 167: 68-76. DOI: 10.1016/j.aquatox.2015.07.021.