Secondary metabolites of rhizospheric fungal isolate Aspergillus carneus ABRF4 regulate the antibacterial and anti-proliferative activity against cancer cells

##plugins.themes.bootstrap3.article.main##

MAHENDRA KUMAR SAHU
RAGINI YEERAVALLI
AMITAVA DAS
HARIT JHA

Abstract

Abstract. Sahu MK, Yeeravalli R, Das A, Jha H. 2023. Secondary metabolites of rhizospheric fungal isolate Aspergillus carneus ABRF4 regulate the antibacterial and anti-proliferative activity against cancer cells. Nusantara Bioscience 15: 137-142. The medicinal capabilities of plants are influenced by soil chemistry, genotype, and climate. Many biotic and abiotic factors affect soil composition. Microorganisms constituting the soil microflora indicate a mutualistic relationship with plant rhizospheric region, and they play an important role in plant secondary metabolite production, yield, and efficacy. They are the major resources for structurally unique bioactive natural metabolites. The aim of the present study was to evaluate the bioactivity of the secondary metabolite extracted from the rhizospheric fungal isolate Aspergillus carneus ABRF4) isolated from the Achanakmar Biosphere Reserve, Chhattisgarh, India. The fungal secondary metabolites were extracted using several solvents by soxhlet extraction techniques. The crude and partially purified column fractions of A. carneus ABRF4 were characterized by Gas Chromatography-Mass Spectroscopy (GC-MS), Fourier Transform Infra-Red (FTIR) spectrum, and Thin Layer Chromatography (TLC). Results showed that the acetonitrile fraction had an antimicrobial activity with the variable zone of inhibition against human pathogens such as Bacillus circulans (MTCC-7906), Bacillus subtilis (MTCC 441), Staphylococcus aureus (MTCC-96), and Ralstonia eutropha (MTCC-2487). The crude extracts and the identified secondary metabolite, trans- 1,3-dimethyl-Cyclohexane, possess different anti-proliferative activity against human tissue-specific cancer cell lines, including breast cancer (MDA-MB-231, MDA-MB-468, and MCF-7), liver cancer (HepG2), lung cancer (A-549), and prostate cancer (DU-145) suggesting a potential therapeutic application of the isolated rhizospheric fungi.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Abd-Allah WH, Elshafie MF. 2018. Synthesis and biological evaluation of certain new cyclohexane-1-carboxamides as apoptosis inducers. Orient J Chem 34 (2): 825-833. DOI: 10.13005/ojc/340228.
Abd-Allah WH, Salman A, Saad SS. 2019. Anticancer activity of newly synthesized 1, 1?disubstituted cyclohexane-1-carboxamides: In vitro caspases mediated apoptosis activators in human cancer cell lines and their molecular modeling, Drug Dev Res 80 (7): 933-947. DOI: 10.1002/ddr.21573.
Alkhulaifi MM, Awaad AS, Al-Mudhayyif HA, Alothman MR, Alqasoumi SI, Zain SM. 2019. Evaluation of antimicrobial activity of secondary metabolites of fungi isolated from Sultanate Oman soil. Saudi Pharm J 27 (3): 401-5. DOI: 10.1016/j.jsps.2018.12.009.
Azerang P, Khalaj V, Kobarfard F, Owlia P, Sardari S, Shahidi S. 2019. Molecular characterization of a fungus producing membrane active metabolite and analysis of the produced secondary metabolite. Iran Biomed J 23 (2): 121-128. DOI: 10.29252/.23.2.121.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review J Pharm Anal 6 (2): 71-79. DOI: 10.1016/j.jpha.2015.11.005.
Ferris H, Tuomisto H. 2015. Unearthing the role of biological diversity in soil health. Soil Biol Biochem 85: 101-109. DOI: 10.1016/j.soilbio.2015.02.037.
Kong Z, Liu H. 2022 Modification of rhizosphere microbial communities: A possible mechanism of plant growth promoting Rhizobacteria enhancing plant growth and fitness. Front Plant Sci 13: 920813. DOI: 10.3389/fpls.2022.920813.
Lallo S, Lee S, Dibwe DF, Tezuka Y, Morita H. 2014. A new polyoxygenated cyclohexane and other constituents from Kaempferia rotunda and their cytotoxic activity. Natl Prod Res 28 (20): 1754-9. DOI: 10.1080/14786419.2014.945175.
Manupati K, Dhoke NR, Debnath T, Yeeravalli R, Guguloth K, Saeidpour S, De UC, Debnath S, Das A. 2017. Inhibiting epidermal growth factor receptor signaling potentiates mesenchymal–epithelial transition of breast cancer stem cells and their responsiveness to anticancer drugs, The FEBS J 284 (12): 1830-54. DOI: 10.1111/febs.14084.
Modak B, Torres R, De Saint Pierre M, Katherine S, Armijo A, Caviedes R, Caviedes P. 2011. In vitro anti-proliferative activity of 3 H-spiro [1-benzofuran-2, 1'-cyclohexane] derivatives. Bol Latinoam Caribe Plant Med Aromát 10 (3): 281-288.
Nicoletti R, Lopez-Gresa MP, Manzo E, Carella A, Ciavatta ML. 2007. Production and fungitoxic activity of Sch 642305, a secondary metabolite of Penicillium canescens. Mycopathologia 163 (5): 295-301. DOI: 10.1007/s11046-007-9015-x.
Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, Mohamed RMSR, Almulaiky YQ, Abdulaal WH. 2021. Potential of Anticancer Activity of Secondary Metabolic Products from Marine Fungi. J Fungi 7 (6): 436. DOI: 10.3390/jof7060436.
Özkaya FC, Ebrahim W, El-Neketi M, Tanr?kul TT, Kalscheuer R, Müller WEG, Guo Z, Zou K, Liu Z, Proksch P. 2018. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoter 131: 9-14. DOI: 10.1016/j.fitote.2018.10.008.
Pandit S, Puttananjaih MH, Harohally N, Dhale MA. 2018. Functional attributes of a new molecule- 2-hydroxymethyl-benzoic acid 2?-hydroxy-tetradecyl ester isolated from Talaromyces purpureogenus CFRM02. Food Chem 30: 89-96 DOI: 10.1016/j.foodchem.2018.02.034.
Parshikov IA, Woodling KA, Sutherland JB. 2015. Biotransformations of organic compounds mediated by cultures of Aspergillus niger. Appl Microbiol Biotechnol 99 (17): 6971-6986. DOI: 10.1007/s00253-015-6765-0.
Radhika KP, Rodrigues BF. 2010. Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region. J For Res 21 (1): 45-52. DOI: 10.1007/s11676-010-0007-1.
Retnowati Y, Moeljopawiro S, Djohan TjS, Soetarto ES. 2018. Antimicrobial activities of actinomycetes isolates from rhizospheric soil on different mangrove forests of Torosiaje, Gorontalo, Indonesia. Biodiversitas 19: 2196-2203. DOI: 10.13057/biodiv/d190627.
Sahu M, Jha H. 2020. Study on antioxidant, antidiabetic and antibacterial activity of Rhizospheric fungi from Achanakmar Biosphere Reserve, Bilaspur, Egypt J Microbiol 55 (1): 29-44. DOI: 10.21608/EJM.2020.31025.1160.
Sahu MK, Jha H. 2020. Rhizospheric fungi: Diversity and therapeutic potential. In: Chaurasia PK, Bharti SL (eds). Research Advances in the Fungal World. Nova Publisher, New York.
Sahu MK, Kaushik K, Das A, Jha H. 2020. In vitro and in silico antioxidant and anti-proliferative activity of rhizospheric fungus Talaromyces purpureogenus isolate-ABRF2. Bioresour Bioprocess 7: 14. DOI: 10.1186/s40643-020-00303-z.
Sahu MK, Singh D, Ghosh SC, Das A, Jha H. 2022. Bioactive potential of secondary metabolites of rhizospheric fungus Penicillium citrinum isolate-ABRF3. J Biosci Biotechnol 11 (1): 1-14.
Shoaib M, Israyilova AA, Ganbarov K. 2021. Cyclohexane and its functionally substituted derivatives: Important class of organic compounds with potential antimicrobial activities. J Microbiol Biotechnol Food Sci 9 (1): 78-83. DOI: 10.15414/jmbfs.2019.9.1.84-87.
Takahashi N, Nyvad BJ. 2008. Caries ecology revisited: Microbial dynamics and the caries process. Caries Res 42 (6): 409-418. DOI: 10.1159/000159604.
Tomar V, Kumar N, Tomar R, Sood D, Dhiman N, Dass SK, Prakash S, Madan J, Chandra R. 2019. Biological evaluation of noscapine analogs as potent and microtubule-targeted anticancer agents. Sci Rep 9 (1): 19542. DOI: 10.1038/s41598-019-55839-8.
Tulsawani R, Sharma P, Manimaran M, Koganti P, Singh M, Meena DK, Negi PS, Misra K. 2020. Effects of extraction temperature on efficacy of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), aqueous extract against oxidative. Intl J Med Mushrooms 22 (6): 547-558. DOI: 10.1615/IntJMedMushrooms.2020035074.
Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NA, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D, Allison JP. 2017. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170 (6): 1120-1133. DOI: 10.1016/j.cell.2017.07.024.
Zeilinger S, Gruber S, Bansal R, Mukherjee PK. 2016. Secondary metabolism in Trichoderma–Chemistry meets genomics. Fungal Biol Rev 30: 74-90. DOI: 10.1016/j.fbr.2016.05.001.