Abundance and diversity of terrestrial free-living nematodes in potato agroecosystem

##plugins.themes.bootstrap3.article.main##

MUTALA’LIAH
ABDUL MANAN
LAFI NA’IMATUL BAYYINAH

Abstract

Abstract. Mutala’liah, Manan A, Bayyinah LN. 2023. Abundance and diversity of terrestrial free-living nematodes in potato agroecosystem. Nusantara Bioscience 15: 129-136. The presence of terrestrial free-living nematodes in agroecosystems is frequently overlooked. However, these microorganisms in agroecosystems soil are beneficial for supporting plant growth. These microorganisms could recycle the nitrogen in soil, decomposition and mineralization of organic matter, and suppress the densities of plant parasitic nematodes through their life strategy. Terrestrial free-living nematodes are classified according to trophic groups such as bacterivores, fungivores, predators, and omnivores. Reports on the abundance and diversity of terrestrial free-living nematode populations in agroecosystems, especially on potato plantations, were limited. They usually focused on the plant parasitic nematode’s attack on potatoes. Therefore, this study aimed to examine the diversity and abundance of terrestrial free-living nematodes in potato agroecosystems. The current study was conducted in two potato fields in Pratin Village, Serang, Purbalingga, Central Java, Indonesia. Soil samples were collected from two potato fields planted with different varieties (Granola and Atlantik) and extracted using the Whitehead-tray method. The variables observed were the diversity of genera and the abundance of terrestrial free-living nematode populations from each field. Population density data were analyzed by T-test, and diversity (H'), evenness (E), and dominance index (D) were also calculated. The results showed that the mean population densities of terrestrial free-living nematodes in the two fields were significantly higher at 918.40 individuals/ 100 g of soil in the Atlantik field than in the Granola field 76.53 individuals/ 100 g of soil. However, the diversity, evenness, and dominance index were not significantly different in both fields. Genera of nematode found in the Granola field were Diplogaster, Dorylaimus, Trypilla, and Lotonchus, while in the Atlantik field were Rhabditis and Dorylaimus.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Alvarez-Ortega S, Pena-Santiago R. 2010. Studies on the genus Aporcelaimellus Heyns, 1965 (Dorylaimida: Aporcelaimidae) – material studied by Thorne and Swanger in 1936 but not named. Russ J Nematol 18 (1): 69-84. DOI: 10.1163/138855410X513213.
Andrassy I. 2009. Free-living Nematodes of Hungary III. Hungarian Natural History Museum, Budapest.
Asghari R, Eskandari A, Maafi ZT, Alvarez-Ortega S, Zhao ZQ. 2017. Morphological and molecular characterisation of new and known species of Tripyla bastian, 1865 (Triplonchida: Tripylidae) from northern Iran, with phylogenetic relationships, compendium and identification key. Nematology 19: 21-56. DOI: 10.1163/15685411-00003030.
Askary TH, Abd-elgawad MMM. 2017. Beneficial nematodes in agroecosystems: A global perspective. In: Abd-elgawad MMM, Askary TH, Coupland J (Eds.). Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. CAB International, UK. DOI: 10.1079/9781786390004.0000.
Askary TH. 2010. Nematodes as biocontrolagents. In: Lichtfouse E (Eds.). Sociology, Organic Farming, Climate Change and Soil Science. Springer, Netherlands DOI: 10.1007/978-90-481-3333-8_13.
Atungwu JJ, Yusuf AO, Oladeji OA, Aruna WO, Joseph-adekunle TT, Tijjani I. 2018. Impact of gateway organic fertilizer on herbivorous and non-parasitic nematodes associated with Telfairia occidentalis Hook F. Field. In: Rahman G, Olowe V, Olabiyi T, Azim K, Adeoluwa O (Eds.). Ecological and Organic Agriculture Strategies for Viable Continental and National Development in the Context of the African Union's Agenda 2063; Scientific Track Proceedings of the 4th African Organic Conference. Saly Portudal, Senegal, 5-8 November 2018.
Azizoglu U, Karaborklu S, Ayvaz A, Yilmaz S. 2016. Phylogenetic relationships of insect-associated free-living rhabditid nematodes from Eastern Mediterranean Region of Turkey. Appl Ecol Environ Res 14 (3): 93-103. DOI: 10.15666/aeer/1403_093103.
Bajaj HK, Kanwar RS. 2015. Biology and predatory attributes of a diplogasterid nematode, Fictor cimposticola Khan et al., 2008. Helminthologia 52 (1): 50-57. DOI: 10.1515/helmin-2015-0009.
Bell NL, Watson RN. 2001. Optimising the whitehead and hemming tray method to extract plant parasitic and other nematodes from two soils under pasture. Nematology 3 (2): 179-185. DOI: 10.1163/156854101750236312.
Bilgrami AL, Gaugler R. 2004. Feeding Behaviour. CAB International, UK. DOI: 10.1079/9780851998183.0091.
Buchan D, Gebremikael MT, Ameloot N, Sleutel S, De Neve S. 2013. The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores. Soil Biol Biochem 60: 142-155. DOI: 10.1016/j.soilbio.2013.01.022.
Bull J, Stirling GR, Magarey R. 2018. Plant-parasitic and free-living nematodes associated with sugarcane in North Queensland. Proc Aust Soc Sugar Cane Technol 40: 78-85.
Chen X, Xue W, Xue J, Griffiths BS, Liu M. 2020. Contribution of bacterivorous nematodes to soil resistance and resilience under copper or heat stress. Soil Ecol Lett 2 (3): 220-229. DOI: 10.1007/s42832-020-0045-3.
Cid del prado vera I, Ferris H, Nadler SA. 2012. Soil inhabiting nematodes of the genera Trischistoma, Tripylina, and Tripyla from Mexico and the USA with descriptions of new species. J Nematode Morphol Syst 13 (1): 29-49.
Darmola FY, Afolami SO, Idowu AA, Odeyemi LS. 2013. Effects of poultry manure and carbofuran soil amendments on soil nematode population and yield of pineapple. Intl J Agric Sci 3 (4): 298-307.
Fauzia M, Jairajpuri MS, Khan Z. 1998. Biocontrol potential of Mononchoides longicaudatus on Meloidogyne incognita on tomato plants. Int J Nematol 8: 89-91.
Gupta SK, Mondal S. 2018. Study on nematodes associated with medicinal plants in west Bengal. J Entomol Zool Stud 6 (3): 409-419.
Hailu FA, Hailu YA. 2020. Agro-ecological importance of nematodes (round worms). Acta Sci Agric 4 (1): 156-162. DOI: 10.31080/ASAG.2020.04.763.
Hodda M. 2022. Phylum nematoda: Feeding habits for all valid genera using a new, universal scheme encompassing the entire phylum, with descriptions of morphological characteristics of the stoma, a key, and discussion of the evidence for trophic relationships. Zootaxa 5114 (1): 318-451. DOI: 10.11646/zootaxa.5114.1.3.
IARI. 2020. Annual Report 2019. ICAR-Indian Agricultural Research Institute New Delhi, India.
Iqbal S, Jones MGK. 2017. Nematodes. Elsevier, Amsterdam. DOI: 10.1016/B978-0-12-394807-6.00061-7.
Kekelis P, Papatheodorou EM, Terpsidou E, Dimou M, Aschonitis V, Monokrousos N. 2022. The free-living nematodes as indicators of the soil quality in relation to the clay content, when coffee waste is applied. Agronomy 12 (2702): 1-16. DOI: 10.3390/agronomy12112702.
Khan Z, Araki M. 2002. A new and two first recorded species of Mononchids (Nematoda: Mononchida) from Japan. Nematol Mediterr 30: 167-173.
Khan Z, Kim YH. 2005. The predatory nematode, Mononchoides fortidens (Nematoda: Diplogasterida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted field soil. Biol Control 35: 78-82. DOI: 10.1016/j.biocontrol.2005.05.015.
Khan Z, Kim YH. 2007. A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35: 370-379. DOI: 10.1016/j.apsoil.2006.07.007.
Khanum TA, Mehmood N, Khatoon N. 2022. Nematodes as Biological Indicators of Soil Quality in Agroecosystems. IntechOpen, London. DOI: 10.5772/intechopen.99745.
Kim YH. 2015. Predatory nematodes as biocontrol agents. In: Askary TH, Martinelli PRP (Eds.). Biocontrol Agents as Phytonematodes. CAB International, UK. DOI: 10.1079/9781780643755.0393.
Koc I, Yildiz S, Yardim EN. 2020. Effect of some pesticides and wood vinegar on soil nematodes in a wheat ageo-ecosystem. KSU J Agric Nat 23 (3): 621-633. DOI: 10.18016/ksutarimdoga.vi.570180.
Kusuma MD, Supramana S, Giyanto G. 2020. Phytonematodes community and polyphasic character of Aphelenchoides varicaudatus on Garlic Plants in Tegal Regency, Central Java. JPTI 24 (2): 216-223. DOI: 10.22146/jpti.49779.
Li X, Liu Q, Liu Z, Shi W, Yang D, Tarasco E. 2014. Effects of organic and other management practices on soil nematode communities in tea plantation: A case study in southern China. J Plant Nutr Soil Sci 177: 604-612. DOI: 10.1002/jpln.201300610.
Linsell K, Stirling G, Stirling A, Hartley D, Herdina, Cheshire A, Nobbs J, McKay A, Ophel Keller K. 2014. Free-Living Nematodes as Indicators of Biological Soil Health. Australian Government-Grain Research and Development Corporation, Australian. https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2014/07/free-living-nematodes-as-indicators-of-biological-soil-health.
Liu MN, Xu YM, Zhao ZQ, Wang JM. 2021. Morphological and molecular characteristics of Bastiania sinensis sp. n., Tripyla aquatica Brzeski & Winiszewska-Slipinska, 1993 and T. setifera Butschli, 1873 (Nematoda: Triplonchida) from Shanxi Provine, North China. Nematology 23 (9): 987-1009. DOI: 10.1163/15685411-bja10090.
Lu Q, Liu T, Wang N, Dou Z, Wang K, Zuo Y. 2020. A review of soil nematodes as biological indicators for the assessment of soil health. Front Agr Sci Eng 7 (3): 275-281. DOI: 10.15302/J-FASE-2020327.
Majdi N, Michiels IC, Traunspurger W. 2016. Resource depletion affects the structure of an experimental benthic food web. Limnologica 59: 99-108. DOI: 10.1016/j.limno.2016.03.009.
Mathesius U, Costa SR. 2021. Plant signals differentially affect rhizosphere nematode populations. J Exp Bot 72 (10): 3496-3499. DOI: 10.1093/jxb/erab149.
Mendoza-de Givez P. 2022. Soil-borne nematodes: Impact in agriculture and livestock and sustainable strategies of prevention and control with special reference to the use of nematode natural enemies. Pathogens 11 (640): 1-24. DOI: 10.3390/pathogens11060640.
Mirsam H, Muis A, Nonci N. 2020. The density and diversity of plant-oarasitic nematodes associated with maize rhizosphere in Malakaji Highland, South Sulawesi, Indonesia. Biodiversitas 21 (6): 2654-2661. DOI: 10.13057/biodiv/d210637.
Mulyadi. 2009. Agricultural Nematology. Universitas Gadjah Mada Press, Yogyakarta. [Indonesian]
Musarrat AR, Shahina F, Shah AA, Saba R, Feroza K. 2016. Community analysis of plant parasitic and free-living nematodes associated with rice and soybean plantation from Pakistan. Appl Ecol Environ Res 14 (5): 19-33. DOI: 10.15666/aeer/1405_019033.
Neher DA. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Ann Rev Phytopathol 48: 18.1-18.24. DOI: 10.1146/annurev-phyto-073009-114439.
Pothula SK, Grewal PS, Auge RM, Saxton AM, Bernard EC. 2019. Agricultural intensification and urbanization negatively impact soil nematode richness and abundance: A meta-analysis. J Nematol 51: 1-17. DOI: 10.21307/jofnem-2019-011.
Rahman L, Whitelaw-weckert MA, Orchard B. 2014. Impact of organic soil amendments, including poultry-litter biochar, on nematodes in a Riverina, New South Wales, vineyard. Soil Res 52: 604-619. DOI: 10.1071/SR14041.
Sagita L, Siswanto B, Hairiah K. 2014. Studi keragaman dan kerapatan nematoda pada berbagai sistem penggunaan lahan di Sub DAS Konto. JTSL 1 (1): 51-60. [Indonesian]
Shrestha R, Bam AB. 2015. Isolation of plant parasitic nematodes in pear orchard at Chhaimale (pharping) vdc of Kathmadu. NJZ 3 (1): 76-81. DOI: 10.3126/njz.v3i1.30869.
Sikder MM, Vestergard M. 2020. Impacts of root metabolites on soil nematodes. Front Plant Sci 10 (1792): 1-18. DOI: 10.3389/fpls.2019.01792.
Sofian, Sopialena, Suyadi S, Rudiyanto H. 2022. Keragaman nematoda pada lahan reklamasi pasca tambang batu bara di Desa Bangun Rejo Kecamatan Tenggarong Seberang. J Agrifor XXI (1): 161-174. DOI: 10.31293/agrifor.v21i1.5951. [Indonesian]
Sudhaus W. 2018. Dispersion of nematodes (Rhabditida) in the guts of slugs and snail. Soil Org 90 (3): 101-114. DOI: 10.25674/4jp6-0v30.
Sun X, Zhang X, Zhang S, Dai G, Han S, Liang W. 2013. Soil nematodes responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS ONE 8 (12): 1-8. DOI: 10.1371/journal.pone.0082468.
Tarno H, Marsudi EW, Widjayanti T, Setiawan Y. 2021. Nematodes association with Robusta coffee plantations in Malang District, East Java, Indonesia. Biodiversitas 22 (8): 3306-3312. DOI: 10.13057/biodiv/d220825.
UNL Nematology Lab. 2023. Interactive diagnostic key to plant parasitic, free-living and predaceous nematodes. https://nematode.unl.edu/key/nemakey.htm.
van den Hoogen J, Geisen S, Routh D et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572: 194-198. DOI: 10.1038/s41586-019-1418-6.
Vinciguerra MT, Eskandari A, Clausi M, Asghari R, Rappazzo G. 2016. Description and molecular characterization of two new species of Dorylaimidae (Dorylaimida: Nematoda) from Iran, with a compendium of all the nominal species of Dorylaimus Dujardin, 1845. Nematology 00: 1-18. DOI: 10.1163/15685411-00002960.
Vu TTT, Le TML, Nguyen TD. 2021. Morphological and molecular characterization of lotonchus lotilabiatus n. sp. (Nematoda: lotonchidae) from Lao Cai Province, Vietnam. J Nematol 53: 1-22. DOI: 10.21307/jofnem-2021-066.
Widowati R, Indarti S, Bambang RTP. 2014. Distribution of plant nonparasitic nematode genera on Arabica coffee. JPTI 18 (1): 24-32. [Indonesian].
Yadav S, Patil J, Kanwar RS. 2018. The role of free-living nematode population in the organic matter recycling. Intl J Curr Microbiol App Sci 7 (6): 1-8. DOI: 10.20546/ijcmas.2018.706.321.
Yang B, Chen Q, Liu X, Chen F, Liang Y, Qiang W, He L, Ge F. 2020. Effects of pest management practices on soil nematode abundance, diversity, metabolic footprint and community composition under paddy rice fields. Front Plant Sci 11 (88): 1-10. DOI: 10.3389/fpls.2020.00088.