Screening for endophytic bacteria from Ambon Banana (Musa paradisiaca) as biocontrol agent of anthracnose (Colletotrichum gloeosporioides) on bananas fruit




Abstract. Pangastuti A, Pratiwi H, Setyaningsih R. 2023. Screening for endophytic bacteria from Ambon Banana (Musa paradisiaca L.) as biocontrol agent of anthracnose (Colletotrichum gloeosporioides) on bananas fruit. Nusantara Bioscience 15: 238-244. Post-harvest Ambon Bananas (Musa paradisiaca L.) are sensitive to anthracnose disease, caused by Colletotrichum gloeosporioides, and causes the fruit to rot quickly. Thus, chemical fungicides are employed, damaging living organisms and the environment. One solution is biocontrol using endophytic microorganisms as antagonistic agents against the anthracnose fungus that causes anthracnose disease. This study aimed to obtain potential endophytic bacteria from the Ambon Banana plant that had inhibitory activity against the growth of the pathogenic fungus C. gloeosporioides that causes anthracnose in bananas. Endophytic bacteria were recovered from Ambon Banana roots by crushing plant components. Therefore, bacterial isolates were tested for antagonistic interactions with pathogenic fungi using the dual culture approach. The 16S rRNA gene sequence analysis was used to identify bacterial isolates with the most significant inhibitory potential. According to the findings of this study, seven isolates of endophytic bacteria, A2-1, A2-2, A5-2, A6-2, A6-3, A8-1, and A9-1, can limit the growth of the pathogenic fungus C. gloeosporioides. The strain A6-3, identified as Pseudomonas pseudoalcaligenes, exhibited the greatest potential as a biocontrol agent against the pathogenic fungus C. gloeosporioides. It achieved the highest inhibition rate of 43.59%, resulting in an extended fruit shelf life and reduced harm susceptibility.



Abd-Elsalam KA, Roshdy S, Amin OE, Rabani M. 2010. First morphogenetic identification of the fungal pathogen Colletotrichum musae (Phyllachoraceae) from imported bananas in Saudi Arabia. Gen Mol Res GMR 9 (4): 2335-2342. DOI: 10.4238/vol9-4gmr972.
Alam B, L? J, G? Q, Khan MA, G?ng J, Mehmood S, Yuán Y, G?ng W, 2021. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Front Plant Sci 12: 3060. DOI: 10.3389/fpls.2021.791033.
de Andrade LA, Santos CHB, Frezarin ET, Sales LR, Rigobelo EC. 2023. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms 11 (4): 1088. DOI: 10.3390/microorganisms11041088.
Ayesha MS, Suryanarayanan TS, Nataraja KN, Prasad SR, Shaanker RU. 2021. Seed treatment with systemic fungicides: time for review. Front Plant Sci 2: 654512. DOI: 10.3389/fpls.2021.654512.
Bele L, Kouamé DK, Atta HD. 2018. Sensitivity of Colletotrichum species responsible for banana anthracnose disease to some fungicides used in postharvest treatments in Côte d'Ivoire. Intl J Environ Agric Biotech 3 (2): 537-542. DOI: 10.22161/ijeab/3.2.30.
Boiu-Sicuia O-A, Toma RC, Digu?? CF, Matei F, Cornea CP. 2023. In vitro evaluation of some endophytic bacillus to potentially inhibit grape and grapevine fungal pathogens. Plants 12 (13): 2553. DOI: 10.3390/plants12132553.
Damasceno CL, Duarte EAA, dos Santos LBPR, de Oliveira TAS, de Jesus FN, de Oliveira LM, Góes-Neto A, Soares ACF. 2019. Postharvest biocontrol of anthracnose in bananas by endophytic and soil rhizosphere bacteria associated with sisal (Agave sisalana) in Brazil. Biol Control 137: 104016. DOI: 10.1016/j.biocontrol.2019.104016.
Digra S, Nonzom S. 2023. An insight into endophytic antimicrobial compounds: an updated analysis. Plant Biotechnol Rep 17: 427-457. DOI: 10.1007/s11816-023-00824-x.
dos Santos RM, Diaz PA, Lobo LL, Rigobelo EC. 2020. Use of plant growth-promoting rhizobacteria in maize and sugarcane: Characteristics and applications. Front Sustain Food Syst 4: 136. DOI: 10.3389/fsufs.2020.00136.
Eshetu Y, Tesfaye A. 2020. Plant Developmental stages effect on antifungal activities of fluorescent Pseudomonas under Controlled environment. Am J Plant Physiol 15: 32-40. DOI: 10.3923/ajpp.2020.32.40.
Fadiji AE, Babalola OO. 2020. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotech 15 (8): 467. DOI: 10.3389/fbioe.2020.00467.
Fu W, Tian G, Pei Q, Ge X, Tian P. 2017. Evaluation of berberine as a natural compound to inhibit peach brown rot pathogen Monilinia fructicola. Crop Prot 91: 20-26. DOI: 10.1016/j.cropro.2016.09.008.
Gamit DA, Tank S. 2019. Impact of Pseudomonas pseudoalcaligenes on growth of Solanum lycopersicum and Oryza sativa. Malay J Biosci 6 (1): 1-9.
Gautam AK. 2014a. Colletotrichum gloeosporioides: Biology, pathogenicity and management in India. J Plant Physiol Pathol 2: 2. DOI: 10.4172/2329-955X.1000125.
Gautam AK. 2014b. The genera Colletotrichum: an incitant of numerous new plant diseases in India. J New Biol Reports 3: 9-21.
Goswami SK, Singh V, Chakdar H, Choudhary P. 2018. Harmful effects of fungicides-Current status. Intl J Agric Environ Biotech 11: 1011-9.
Hamaoka K, Aoki Y, Suzuki S. 2021. Isolation and characterization of endophyte bacillus velezensis KOF112 from grapevine shoot xylem as biological control agent for fungal diseases. Plants 10 (9). DOI: 10.3390/plants10091815.
Hong CE, Park JM. 2016. Endophytic bacteria as biocontrol agents against plant pathogens: Current state-of-the-art. Plant Biotechnol Rep 10: 353-357. DOI: 10.1007/s11816-016-0423-6.
Huang H, Wu Z, Tian C, Liang Y, You C, Chen L. 2014. Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides. Ann Microbiol 65 (3): 1361-1371. DOI: 10.1007/s13213-014-0974-0.
Kulshreshtha S, Sharma V. 2022. Beta-Glucanases: Sources and production from fungi. In: Pradeep N, Edison LK (eds). Microbial Beta Glucanases. Interdisciplinary Biotechnological Advances. Springer, Singapore. DOI: 10.1007/978-981-19-6466-4_4.
Lau ET, Tani A, Khew CY, Chua YQ, Hwang SS. 2020. Plant growth-promoting bacteria as botential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiol Res 240: 1-10. DOI: 10.1016/j.micres.2020.126549.
Mayadianti IAI, Khalimi K, Suniti NW. 2020. Uji daya hambat bakteri Paenibacillus polymyxa terhadap pertumbuhan jamur Colletotrichum sp. secara in vitro. Agroekoteknologi Tropika 9 (4): 229-237. [Indonesian]
Morales-Cedeño LR, Orozco-Mosqueda M del C, Loeza-Lara PD, Parra-Cota FI, de los Santos-Villalobos S, Santoyo G. 2021. plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol Res 242: 1-12. DOI: 10.1016/j.micres.2020.126612.
Muñoz-Leoz B, Garbisu C, Charcosset JY, Sánchez-Pérez JM, Antigüedad I, Ruiz-Romera E. 2013. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Sci Total Environ 449: 345-54. DOI: 10.1016/j.scitotenv.2013.01.079.
Mushtaq S, Shafiq M, Tariq MR, Sami A, Nawaz-Ul-Rehman MS, Bhatti MH, Haider MS, Sadiq S, Abbas MT, Hussain M, Shahid MA. 2023. Interaction between bacterial endophytes and host plants. Front Plant Sci 13: 1092105. DOI: 10.3389/fpls.2022.1092105.
Nawangsih AA. 2007. Pemanfaatan bakteri endofit pada pisang untuk mengendalikan penyakit darah: Isolasi, uji penghambatan in vitro dan in planta. Jurnal Ilmu Pertanian Indonesia 12 (1): 43-49. [Indonesian]
Naz R, Khushhal S, Asif T, Mubeen S, Saranraj P, Sayyed RZ. 2022. Inhibition of bacterial and fungal phytopathogens through volatile organic compounds produced by Pseudomonas sp.. In: Sayyed RZ, Uarrota VG (eds). Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion. Springer Cham, Switzerland. DOI: 10.1007/978-3-031-07559-9_6.
Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A. 2022. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol 13: 2833. DOI: 10.3389/fmicb.2022.962619.
Pliego C, Cazorla FM, González-Sánchez MÁ, Pérez-Jiménez RM, de Vicente A, Ramo, C. 2007. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res Microbiol 158 (5): 463-470. DOI: 10.1016/j.resmic.2007.02.011.
Pliego C, Vicente AD, Cazorla FM, Ramos C. 2019. Response of the biocontrol agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix exudate. Appl Environ Microbiol 85 (3): 1-17. DOI: 10.1128/AEM.01741-18.
Pradana PA, Munif A, Supramana S. 2016. Bakteri endofit asal berbagai akar tanaman sebagai agens pengendali nematoda puru akar Meloidogyne incognita pada tomat. Jurnal Fitopatologi Indonesia 12 (3): 75-82. DOI: 10.14692/jfi.12.3.75. [Indonesian]
Reyes-Perez JJ, Hernandez-Montiel LG, Vero S, Noa-Carrazana JC, Quiñones-Aguilar EE, Rincón-Enríquez G. 2019. Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. J Food Sci Tech 56 (11): 4992-4999. DOI: 10.1007/s13197-019-03971-8.
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 2008. Bacterial endophytes: Recent developments and applications. FEMS Microbiol Lett 278 (1): 1-9. DOI: 10.1111/j.1574-6968.2007.00918.x.
Sanjaya IGNPW, Wirya GNAS, Phabiola TA, Winantara IM. 2019. Isolasi dan seleksi bakteri antagonis sebagai alternatif pengendalian penyakit layu stroberi. Jurnal Agroekoteknologi Tropika 8 (2): 252-262. [Indonesian]
Schulz-Bohm K, Martín-Sánchez L, Garbeva P. 2017. Microbial volatiles: Small molecules with an important role in intra-and inter-kingdom interactions. Front Microbiol 8: 2484. DOI: 10.3389/fmicb.2017.02484.
Stackebrandt E, Goebel BM. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Intl J Syst Evol Microbiol 44: 846-849. DOI: 10.1099/00207713-44-4-846.
Suryadi Y, Priyatno TP, Susilowati DN, Samudra IM, Yudhistira N, Purwakusumah ED. 2013. Isolasi dan karakterisasi kitinase asal Bacillus cereus 11 UJ (isolation and chitinase characterization of Bacillus cereus 11 UJ). Jurnal Biologi Indonesia 9 (1): 51-62. [Indonesian]
Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E. 2013. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4 (4): 236-243. DOI: 10.4161/bioe.23808.
Tewari S, Shrivas VL, Hariprasad P, Sharma S. 2019. Harnessing endophytes as biocontrol agents. In: Ansari R, Mahmood I (eds). Plant Health under Biotic Stress. Springer, Singapore. DOI: 10.1007/978-981-13-6040-4_10.
Unnithan RR, Thammaiah N, Kulkarni MS, Gangadharappa PM. 2018. Physiological studies of Colletotrichum musae the causal agent of anthracnose disease of banana. Intl J Plant Protect 11 (1): 87-92. DOI: 10.15740/has/ijpp/11.1/87-92.
Vieira WAdS, Lima WG, Nascimento ES, Michereff SJ, Reis A, Doyle VP, Câmara MPS. 2017. Thiophanate-methyl resistance and fitness components of Colletotrichum musae isolates from banana in Brazil. Plant Dis 101 (9): 1659-1665. DOI: 10.1094/PDIS-11-16-1594-RE.
Wang Z, Zhong T, Chen K, Du M, Chen G, Chen X, Wang K, Zalán Z, Takács K, Kan J. 2021. Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus. Food Control 120 (2): 1-10. DOI: 10.1016/j.foodcont.2020.107499.
Xu K, Li XQ, Zhao DL, Zhang P. 2021. Antifungal secondary metabolites produced by the fungal endophytes: chemical diversity and potential use in the development of biopesticides. Front Microbiol 12: 689527. DOI: 10.3389/fmicb.2021.689527.