Foliar salicylic acid application to enhance the morphophysiology of Basella alba and Basella alba var. cordifolia under water deficit stress

##plugins.themes.bootstrap3.article.main##

ANNIS WATURROIDAH AYUNINGTIAS
SOLICHATUN
ARTINI PANGASTUTI

Abstract

Abstract. Ayuningtias AW, Solichatun, Pangastuti A. 2024. Foliar salicylic acid application to enhance the morphophysiology of Basella alba and Basella alba var. cordifolia under water deficit stress. Nusantara Bioscience 16: 96-103. Global climate change and increasing temperatures are becoming problems in the cultivation of medicinal plants such as Basella alba L. and Basella alba var. cordifolia (Lam.) M.R.Almeida. Foliar salicylic acid on leaves increases growth and productivity in medicinal cultivation. This study aims to determine the exogenous application of salicylic acid to increase the morphophysiology measurement in B. alba and B. alba var. cordifolia under water deficit stress. The study was carried out using a two-factor, completely randomized design consisting of salicylic acid concentration (0, 2, and 6 mM) and water deficit stress (100% (control), 75% field capacity (light stress), 50% wide field capacity (medium stress) and 25% field capacity (heavy stress). The observation results included morphophysiology. The best result on dry weight for B. alba was followed by SA 0mM+Medium stress with 5.45 g; in B. alba var. cordifolia was followed by SA 0mM+ Heavy stress with 3.09 g. Fresh weight for B. alba was followed by SA 4mM+ Heavy stress with 35.95 g, and B. alba var. cordifolia was followed by SA 0mM+ Heavy stress with 35.66 g. The shoot-to-root ratios in B. alba and B. alba var. cordifolia were followed by SA 2mM+Medium stress with 0.93 and 0.99, respectively. Quercetin in B. alba was followed by SA 4mM+ Heavy stress with 2.88% w/w, and B. alba var. cordifolia was followed by SA 6mM+Medium stress with 1.93% w/w. The gallic acid in B. alba and B. alba var. cordifolia was followed by SA 6mM+Medium stress with 10.21% w/w and 9.44% w/w. Prolin in B. alba and B. alba var. cordifolia was followed by SA 6mM+Medium stress with 8.74 and 9.73 µmol/gram wet weight. This study concluded that foliar salicylic acid application enhanced the morphophysiology, including growth, secondary metabolites, and proline accumulation of B. alba and B. alba var. cordifolia under water deficit stress.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Adegoke OG, Ojo OA. 2017. Phytochemical, antioxidant and antimicrobial activities in the leaf, stem and fruit fractions of Basella alba and Basella rubra. Plant 5 (5): 73-79. DOI: 10.11648/j.plant.20170505.11.
Adhikari R, Kumar HN, Shruti SD. 2012. A review on medicinal importance of Basella alba L. Intl J Pharm Sci Drug Res 4 (2): 110-114.
Alakinde TAA, Ojo FMA. 2015. Some anatomical features of Basella: Their adaptive significance to water stress. Res Plant Biol 5 (3): 2231-5101.
Alakinde TAA, Ojo FMA. 2018. Phytochemical and antioxidant properties of forms of Basella. Intl J Veg Sci 25 (5): 1-10. DOI: 10.1080/19315260.2018.1524808.
Alam MM, Hasanuzzaman M, Nahar K, Fujita M. 2013. Exogenous Salicylic acid ameliorates short-term water deficit stress in mustard (Brassica juncea L) seedlings by up-regulating the antioxidant defens and glyoxalase system. Aust J Crop Sci 7 (7): 1053-1063.
Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Intl J Mol Sci 14 (3): 4885-4911. DOI: 10.3390/ijms14034885.
Ashraf M, Foolad M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59: 206-216. DOI: 10.1016/j.envexpbot.2005.12.006.
Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreau L, Vivanco JM. 2008. Transcriptome analysis of Arabidopsis roots treated with signaling compounds: A focus on signal transduction, metabolic regulation and secretion. New Phytol 179: 209-223. DOI: 10.1111/j.1469-8137.2008.02458.x.
Bates LS. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39: 205-207. DOI: 10.1007/BF00018060.
Deshmukh SA, Gaikwad DK. 2014. A review of the taxonomy, ethnobotany, phytochemistry and pharmacology of Basella alba (Basellaceae). J Appl Pharm Sci 4 (1): 153-165. DOI: 10.7324/JAPS.2014.40125.
Furlan A, Bianucci, Castro S, Dietz KJ. 2017. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Sci 263: 12-22. DOI: 10.1016/j.plantsci.2017.06.009.
Gardner FP, Pearce RB, Mitchell RL. 1991. Physiology of Crop Plants. Universitas Indonesia Press, Jakarta.
Gondor OK, Janda T, Soós V, Pál M, Majláth I, Adak MK, Balázs E, Szalai G. 2016. Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies with treatment. Front Plant Sci 7: 1447. DOI: 10.3389/fpls.2016.01447.
Khalil N, Elhady SS, Diri RM, Fekry MI, Bishr M, Salama O, El-Zalabani SM. 2022. Salicylic acid spraying affects secondary metabolites and radical scavenging capacity of drought-stressed Eriocephalus africanus L. Agronomy 12 (10): 2278. DOI: 10.3390/agronomy12102278.
Khalvandi M, Adel S, Ebrahim R, Sara K. 2021. Salicylic acid alleviated the effect of drought stress on photosynthesis characteristics and leaf protein pattern in winter wheat. Heliyon 7 (1): E05908. DOI: 10.1016/J.Heliyon.2021.
Khan MI, Fatma M, Per TS, Anjum NA, Khan NA. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6: 462. DOI: 10.3389/fpls.2015.00462.
Kou X, Weihua H, Jian K. 2022. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Front Plant Sci 13: 1085409. DOI: 10.3389/fpls.2022.1085409.
Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C. 2008. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331 (11): 865-873. DOI: 10.1016/j.crvi.2008.07.024.
Kumar M, Patel MK, Kumar N, Bajpai AB, Siddique KHM. 2021. Metabolomics and molecular approaches reveal water deficit stress tolerance in plants. Intl J Mol Sci 22 (17): 9108. DOI: 10.3390/ijms22179108.
Li G, Peng X, Wei L, Kang G. 2013. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529 (2): 321-325. DOI: 10.1016/j.gene.2013.07.093.
Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R. 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L plant under salinity. Sci Hortic 272: 109537. DOI: 10.1016/j.scienta.2020.109537.
Nazar R, Umar S, Khan NA, Sareer O. 2015. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under water deficit stress. S Afr J Bot 98: 84-94. DOI: 10.1016/j.sajb.2015.02.005.
Noctor G, Reichheld JP, Foyer CH. 2018. ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80: 3-12. DOI: 10.1016/j.semcdb.2017.07.013.
Ogbe AA, Finnie JF, Van Staden J. 2020. The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. S Afr J Bot 134: 126-134. DOI: 10.1016/j.sajb.2020.06.023.
Oh MM, Carey EE, Rajashekar CB. 2009. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47 (7): 578-583. DOI: 10.1016/j.plaphy.2009.02.008.
Peng Y, Jianfei Y, Xin L, Zhang Y. 2021. Salicylic acid: Biosynthesis and signalling. Ann Rev Plant Biol 72: 761-791. DOI: 10.1146/annurev-arplant-081320-092855.
Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. 2019. Climate change has likely already affected global food production. PLoS One 4 (5): e0217148. DOI: 10.1371/journal.pone.0217148.
Salehi-Lisar SY, Bakhshayeshan-Agdam H. 2016. Water deficit stress in plants: Causes, consequences, and tolerance. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran LSP (eds). Water Deficit Stress Tolerance in Plants Vol 1. Springer, Cham. DOI: 10.1007/978-3-319-28899-4_1.
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu, Abdul-Wajid HH, Battaglia ML. 2021. Water deficit stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10: 259. DOI: 10.3390/plants10020259.
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24: 2452. DOI: 10.3390/molecules24132452.
Sharma A, Kohli S, Khanna K, Ramakrishnan M. 2023. Salicylic acid: A phenolic molecule with multiple roles in salt-stressed plants. J Plant Growth Regul 42 (8): 1-25. DOI: 10.1007/s00344-022-10902-z.
Sharma V, Kumar A, Chaudhary A, Mishra A, Rawat S, Basavaraj YB, Shami V, Kaushik P. 2022. Response of wheat genotypes to water deficit stress stimulated by PEG. Stresses 2 (1): 26-51. DOI: 10.3390/stresses2010003.
Shemi R, Wang R, Gheith ESMS, Hussain HA, Hussain S, Irfan M, Cholidah L, Zhang K, Zhang S, Wang L. 2021. Effects of salicylic acid, zink, and glycine betaine on morpho-physiological growth and yield of maize under water deficit stress. Sci Rep 11 (1): 3195. DOI: 10.1038/s41598-021-82264-7.
Sohag AAM, Tahjib-Ul-Arif M, Bresti? M, Afrin S, Sakil MA, Hossain MT, Hossain MA, Hossain MA. 2020. Exogenous salicylic acid and hydrogen peroxide attenuate water deficit stress in rice. Plant Soil Environ 66 (1): 7-13. DOI: 10.17221/472/2019-PSE.
Shohani F, Fazeli A, Sarghein SH. 2023. The effect of silicon application and salicylic acid on enzymatic and non-enzymatic reactions of Schophularia striata L. under drought stress. Sci Hortic 319: 112143. DOI: 10.1016/j.scienta.2023.112143.
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. 2022. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants 11 (22): 3158. DOI: 10.3390/plants11223158.
Sultan B, Defrance D, Iizumi T. 2019. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci Rep 9 (1): 12834. DOI: 10.1038/s41598-019-49167-0.
Supriningrum R, Nurhasnawati H, Faisah S. 2020. Penetapan kadar fenolik total ekstrak etanol daun serunai (Chromolaena odorata l.) dengan metode spektrofotometri UV-VIS. Al Ulum Jurnal Sains dan Teknologi 5 (2): 54-57. DOI: 10.31602/ajst.v5i2.2802. [Indonesian]
Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A. 2015. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5: 12449. DOI: 10.1038/srep12449.
Tjitrosoepomo G. 2007. Taksonomi Tumbuhan (Spermatophyta). Universitas Gadjah Mada Press, Yogyakarta. [Indonesian]
Wang Z, Yang Y, Yadav V, Zhao W, He Y, Zhang X, Wei C. 2022. Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Hortic Plant J 8 (5): 615-626. DOI: 10.1016/j.hpj.2022.06.009.
Xu W, Cui K, Xu A, Nie L, Huang J, Peng S. 2015. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol Plant 37: 9. DOI: 10.1007/s11738-014-1760-0.