Population genetic structure of Kawakawa (Euthynnus affinis Cantor, 1849) in Malaysian waters based on COI gene

##plugins.themes.bootstrap3.article.main##

KHALED BINASHIKHBUBKR
AHMAD DWI SETYAWAN
DARLINA MD NAIM

Abstract

Abstract. Binashikhbubkr K, Setyawan AD, Naim DM. 2023. Population genetic structure of Kawakawa (Euthynnus affinis (Cantor, 1849)) in Malaysian waters based on COI gene. Nusantara Bioscience 15: 258-268. Kawakawa (Euthynnus affinis Cantor, 1849) is widely distributed in the subtropical and tropical waters of the Indo-Pacific region. Still, insufficient data about its stock, management, and protection in Malaysia and nearby waters raises concerns about overfishing and depletion. Therefore, to ensure effective and successful management of a species, it is imperative to conduct a molecular-based assessment of the stock structure. The present study investigated the population genetic structure of E. affinis in Malaysian waters using the mtDNA COI gene. Furthermore, the 632 bp segment of the COI region was sequenced in 372 individuals from 19 distinct populations in Malaysian waters. The results revealed that the genetic divergence varied from low to high. The average Haplotype diversity (Hd) and nucleotide diversity (?) were calculated to be 0.5401 and 0.0045, respectively. Examining haplotype distribution unveiled the presence of 22 unique haplotypes within the COI gene of E. affinis. The analysis of the Neighbor Joining (NJ) tree and the Minimum Spanning Network (MSN) revealed the formation of three distinct clades among E. affinis samples. Analysis of Molecular Variance (AMOVA) showed a significant genetic structure among the 19 populations of E. affinis [(FST = 0.5354 (P < 0.05)]. The neutrality test and mismatch distribution analysis indicated that the specimens underwent a period of population expansion. This study is a significant milestone, providing the first comprehensive documentation of the genetic structure of E. affinis in Malaysia.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Akbar N, Irfan M, Aris M. 2018. Population genetics and phylogeography of bigeye tuna in Moluccas Seas, Indonesia. Ilmu Kelautan: Indones J Mar Sci 23 (4): 145-155. DOI: 10.14710/ik.ijms.23.4.145-155.
Bakar AA, Adamson EAS, Juliana LH, Nor Mohd SA, Wei-Jen C, Man A, Naim MdD. 2018. DNA barcoding of Malaysian commercial snapper reveals an unrecognized species of the yellow-lined Lutjanus (Pisces: Lutjanidae). PLoS ONE 13 (9): e0202945. DOI: 10.1371/journal.pone.0202945.
Becker RA, Sales NG, Santos GM, Santos GB, Carvalho DC. 2015. DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco. J Fish Biol 87 (1): 159-168. DOI: 10.1111/jfb.12707.
Binashikhbubkr K, Malik AA, Al-Misned F, Mahboob S, Naim DM. 2022. Geometric morphometric discrimination between seven populations of Kawakawa Euthynnus affinis (Cantor, 1849) from Peninsular Malaysia. J King Saud Univ Sci 34 (3): 101863. DOI: 10.1016/j.jksus.2022.101863.
Chen W, Hong W, Chen S, Wang Q, Zhang Q. 2015. Population genetic structure and demographic history of the mudskipper Boleophthalmus pectinirostris on the Northwestern Pacific Coast. Environ Biol Fish 98 (3): 845-856. DOI: 10.1007/s10641-014-0320-1.
Collette BB, Nauen CE. 1983. FAO Species Catalogue Vol. 2 Scombrids of the World: An Annotated and Illustrated Catalogue of Tunas, Mackerels, Bonitos and Related Species Know to Date 2 (125): 1-137. FAO, Rome. DOI: 10.1002/iroh.19850700518.
Conover DO, Clarke LM, Munch SB, Wagner GN. 2006. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J Fish Biol 69: 21-47. DOI: 10.1111/j.1095-8649.2006.01274.x.
Cronin-Fine L, Stockwell JD, Whitener ZT, Labbe EM, Willis TV, Wilson KA. 2013. Application of morphometric analysis to identify alewife stock structure in the Gulf of Maine. Mar Coast Fish 5 (1): 11-20. DOI: 10.1080/19425120.2012.741558.
Durand JD, Collet A, Chow S, Guinand B, Borsa P. 2005. Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic Bigeye Tuna (Thunnus obesus) populations, and their admixture off Southern Africa. Mar Biol 147 (2): 313-322. DOI: 10.1007/s00227-005-1564-2.
Samsudin B, Sallehudin J, Noor Azlin M. 2015. Malaysia National Report to the Scientific Committee of the Indian Ocean Tuna Commission for 2014. IOTC–2015–SC18–NR16[E]. www.fao.org/3/bf538e/bf538e.pdf
El Mghazli H, Znari M, Mounir A, Benaissa H, El Ouizgani H. 2021. Does the Atlantic Horse Mackerel Trachurus trachurus (Teleostei: Carangidae) differentiate morphologically within the putative Moroccan-Saharan stock? Mar Biol Res 17 (4): 341-349. DOI: 10.1080/17451000.2021.1957935.
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10 (3): 564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
Figuet E, Ballenghien M, Romiguier J, Galtier N. 2014. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Genome Biol Evol 7 (1): 240-250. DOI: 10.1093/gbe/evu277.
Fu Y. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 14: 915-925. DOI: 10.1093/genetics/147.2.915.
Gain D, Mahfuj MS, Huq KA, Islam SS, Minar MH, Goutham-Bharathi MP. 2017. Landmark-based morphometric and meristic variations of endangered Mrigal Carp, Cirrhinus cirrhosus (Bloch 1795), from wild and hatchery stocks. Sains Malays 46 (5): 695-702. DOI: 10.17576/jsm-2017-4605-03.
Gouvêa LP, Fragkopoulou E, Cavanaugh K, Serrão EA, Araújo MB, Costello MJ, Westergerling EHT, Assis J. 2023. Oceanographic connectivity explains the intra-specific diversity of mangrove forests at global scales. Proc Natl Acad Sci 120 (14): 1-7. DOI: 10.1073/pnas.2209637120.
Grant WS, Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J Hered 89 (5): 415-426. DOI: 10.1093/jhered/89.5.415.
Griffiths SP, Fry GC, Manson FJ, Pillans RD. 2017. Morphometric relationships for four Scombridae fish species in Australian waters. J Appl Ichthyol 33 (3): 583-585. DOI: 10.1111/jai.13136.
Ha TTT, Nga TT, Hang TNA, Alam MS. 2020. Genetic diversity in Pangasius spp. collected in Bangladesh based on mitochondrial cytochrome b gene sequence analysis. Aquacult Rep 17: 100351. DOI: 10.1016/j.aqrep.2020.100351.
Halim LJ, Rahim I, Mahboob S, Al-Ghanim KA, AMAT A, Naim DM. 2022. Phylogenetic relationships of the commercial Red Snapper (Lutjanidae sp.) from three marine regions. J King Saud Univ Sci 34 (2): 101756. DOI: 10.1016/j.jksus.2021.101756.
Hebert PDN, Dewaard JR, Landry JF. 2009. DNA barcodes for 1/1000 of the animal kingdom. Biol Lett 6 (3): 359-362. DOI: 10.1098/rsbl.2009.0848.
Hebert PDN, Ratnasingham S, De Waard JR. 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B: Biol Sci 270 (Suppl. 1): S96-S99. DOI: 10.1098/rsbl.2003.0025.
Horne JB, Herwerden L, Choat JH, Robertson DR. 2008. High population connectivity across the Indo-Pacific: Congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogenet Evol 49 (2): 629-638. DOI: 10.1016/j.ympev.2008.08.023.
Hürkan K. 2020. Analysis of various DNA barcodes on the Turkish protected designation of origin apricot "I?d?r Kay?s?s?" (Prunus armeniaca cv . ?alak). Turk J Agric Food Sci Technol 8 (9): 1982-1987. DOI: 10.24925/turjaf.v8i9.1982-1987.3594.
Imtiaz A, Naim DM. 2018. Geometric morphometrics species discrimination within the Genus Nemipterus from Malaysia and its surrounding seas. Biodiversitas 19 (6): 2316-2322. DOI: 10.13057/biodiv/d190640.
Imtiaz A. 2018. Molecular Identification, Geometric Morphometrics and Phylogenetic Relationship of Commercially Important Fish of Nemipteridae from Malaysian Water and Neighbouring Seas Inferred by mtDNA and Nuclear Genes. [Dissertation]. Universiti Sains Malaysia, Penang. [Malaysian]
Jamaludin NA, Amirul J, Jamaluddin F, Arshaad W, Azizah, S, Nor M. 2022. Mitochondrial marker implies fishery separate management units for Spotted Sardinella, Amblygaster sirm (Walbaum, 1792) populations in the South China Sea and the Andaman Sea. PeerJ 10: e13706. DOI: 10.7717/peerj.13706.
Johnson MG, Mgaya YD, Shaghude YW. 2021. Analysis of the genetic stock structure and phylogenetic relationship of Narrow-Barred Spanish Mackerel Scomberomorus commerson (Lacépède, 1800) along the Northern Tanzanian coastal waters using mitochondrial DNA. Reg Stud Mar Sci 46: 101862. DOI: 10.1016/j.rsma.2021.101862.
Johnson M, Mgay Y, Shaghude Y. 2016. Genetic stock structure and phylogenetic relationship of Kawakawa Euthynnus affinis - Cantor (1849) in the Northern coastal waters of Tanzania using Mitochondrial DNA control region. Indian Ocean Tuna Comm 1849: 1-17.
Jose DM, Divya PR, La KK. 2023. Panmictic stock structure of Milkfish (Chanos chanos, Forsskål 1775) from Indian waters determined using mtDNA marker. J Genet 102: 3. DOI: 10.1007/s12041-022-01395-6.
Kasim NS, Jaafar TNAM, Piah RM, Mohd AW, Mohd NSA, Habib A, Abd GM, Sung YY, Danish-Daniel M, Tan MP. 2020. Recent population expansion of Longtail Tuna Thunnus tonggol (Bleeker, 1851) inferred from the mitochondrial DNA markers. PeerJ 8: e9679. DOI: 10.7717/peerj.9679.
Kamal NZM, Dangnga MS, Naim DM. 2020. Species identification and genetic diversity of Aedes in Penang (Malaysia) based on Cytochrome Oxidase Subunit I. Nusantara Biosci 12 (1): 6-12.? DOI: 10.13057/nusbiosci/n120102.
Khan MA, Miyan K, Khan S, Patel DK, Ansari G. 2012. Studies on the elemental profile of otoliths and truss network. Zool Stud 51 (7): 1195-1206.
Koopman WJM, Li Y, Coart E, Van De Weg WE, Vosman B, Roldán-Ruiz I, Smulders MJM. 2007. Linked vs. unlinked markers: Multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression. Mol Ecol 16 (2): 243-256. DOI: 10.1111/j.1365-294X.2006.03137.x.
Korneliussen TS, Moltke I, Albrechtsen A, Nielsen R. 2013. Calculation of Tajima's D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform 14: 289. DOI: 10.1186/1471-2105-14-289.
Kumar G, Kunal SP, Menezes MR, Meena RM. 2012. Single genetic stock of Kawakawa Euthynnus affinis (Cantor, 1849) along the Indian coast inferred from sequence analyses of mitochondrial DNA D-loop region. Conserv Genet 13 (4): 1119-1131. DOI: 10.1007/s10592-012-0359-5.
Kunal SP, Kumar G. 2013. Cytochrome Oxidase I (COI) sequence conservation and variation patterns in the Yellowfin and Longtail Tunas. Intl J Bioinform Res Appl 9 (3): 301-309. DOI: 10.1504/IJBRA.2013.053613.
Kunal SP, Kumar G, Meneze MR, Meena RM. 2013. Mitochondrial DNA analysis reveals three stocks of Yellowfin Tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters. Conserv Genet 14 (1): 205-213. DOI: 10.1007/s10592-013-0445-3.
Leigh JW, Bryant D. 2015. POPART: Full-feature software for haplotype network construction. Methods Ecol Evol 6 (9): 1110-1116. DOI: 10.1111/2041-210X.12410.
Li W, Chen X, Xu Q, Zhu J, Dai X, Xu L. 2015. Genetic population structure of Thunnus albacares in the Central Pacific Ocean based on mtDNA COI Gene Sequences. Biochem Genet 53 (1-3): 8-22. DOI: 10.1007/s10528-015-9666-0.
Mardlijah S, Pane ARP, Fauzi M, Yusuf HN, Widiyastuti H, Herlisman Zamroni A, Noegroho T, Hufiadi Wagiyo K. 2022. The fishing grounds and the exploitation status of Kawakawa (Euthynnus affinis) in Java Sea, Indonesia. Hayati J Biosci 29 (2): 255-265. DOI: 10.4308/hjb.29.2.255-265.
Masazurah AR, Azizah S, Samsudin B. 2012. A preliminary study of population structure of Kawakawa, Euthynnus affinis (Cantor 1849) in the straits of Malacca. IOTC-2012-WPNT02-23: 1-10.
Mohammadi-Sarpiri F, Keivany Y, Dorafshan S. 2021. Landmark-based geometric analysis of body shape variation and meristic plasticity among populations of Alburnoides idignensis from Tigris River Drainage, Persian Gulf Basin, Iran. Iran J Anim Biosyst 17 (1): 79-88. DOI: 10.22067/ijab.2021.63448.0.
Nei S, Kumar M. 2000. Molecular Phylogenetics. Oxford University Press, New York. DOI: 10.1093/oso/9780195135848.003.0005.
Palumbi SR. 1992. Marine speciation on a small planet. Trends Ecol Evol 7 (4): 114-118. DOI: 10.1016/0169-5347(92)90144-Z.
Pertiwi NPD, Nugraha B, Sulistyaningsih RK, Jatmiko I, Sembiring A, Mahardini A, Cahyani NKD, Anggoro AW, Maddupp HH, Ambariyanto A, Barber PH, Mahardika GN. 2017. Short Communication: Lack of differentiation within the Bigeye Tuna population of Indonesia. Biodiversitas 18 (4): 1406-1413. DOI: 10.13057/biodiv/d180416.
Rogers A, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9 (3): 552-569. DOI: 1093/oxfordjournals.molbev.a040727.
Rozas J, Ferrer-Mata A, Sanchez-Del BJC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34 (12): 3299-3302. DOI: 10.1093/molbev/msx248.
Santos MD, Lopez GV, Barut NC. 2010. A pilot study on the genetic variation of Eastern Little Tuna (Euthynnus affinis) in Southeast Asia. Philipp J Sci 139 (1): 43-50.
Seyhan D, Turan C. 2016. DNA barcoding of Scombrid species in the Turkish marine waters. J Black Sea/Medit Environ 22 (1): 35-45.
Snead AA, Tatarenkov A, Avise JC, Taylor DS, Turner BJ, Marson K, Earley RL. 2023. Out to sea: Ocean currents and patterns of asymmetric gene flow in an intertidal fish species. Front Genet 14: 1206543. DOI: 10.3389/fgene.2023.1206543.
Tajima F. 1989. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. DOI: 10.1093/genetics/123.3.585.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120.
Turan C, Yalçin S, Turan F, Okur E, Akyurt I. 2005. Morphometric comparisons of African Catfish, Clarias gariepinus, populations in Turkey. Folia Zool 54 (1-2): 165-172.
Vandewoestijne S, Baguette M, Brakefield PM, Saccheri IJ. 2004. Phylogeography of Aglais urticae (Lepidoptera) based on DNA sequences of the mitochondrial COI gene and control region. Mol Phylogenet Evol 31 (2): 630-646. DOI: 10.1016/j.ympev.2003.09.007.
Wang L, Wu Z, Liu M, Liu W, Zhao W, Liu H, You F. 2018. DNA barcoding of marine fish species from Rongcheng Bay, China. PeerJ 6: e5013. DOI: 10.7717/peerj.5013.
Ward RD, Woodwark M, Skibinski DOF. 1994. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44: 213-232. DOI: 10.1111/j.1095-8649.1994.tb01200.x.
Ward RD, Zemlak TS, Last PR, Hebert PDN. 2005. DNA barcoding Australia's fish species. Philos Trans R Soc B: Biol Sci 360 (1462): 1847-1857. DOI: 10.1098/rstb.2005.1716.
White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ. 2010. Ocean currents help explain population genetic structure. Proc R Soc B: Biol Sci 277 (1688): 1685-1694. DOI: 10.1098/rspb.2009.2214.
Wujdi A, Kim H J, Oh CW. 2022. Population structure of Indian mackerel (Rastrelliger kanagurta) in Java and Bali Island, Indonesia inferred from otolith shape. Sains Malays 51 (1): 39-50. DOI: 10.17576/jsm-2022-5101-04.