Chemical composition with different drying methods and ruminant methane gas production of Palisada perforata




Abstract. Hidayah N, Noviandi CT, Astuti A, Kustantinah. 2024. Chemical composition with different drying methods and ruminant methane gas production of Palisada perforata. Nusantara Bioscience 16: 37-42. Indonesia is a tropical country with a large diversity of seaweed, but a few studies analyzed it as an ingredient or supplement for ruminant feed. Evaluation of the nutrient content and phenolic compound with different drying methods (freeze-drying and shade-drying) and ruminant gas production from Palisada perforata (Bory) K.W.Nam to know about the potential for ruminant feed and methane mitigation were the goals of this investigation. The nutrient content, kinetic, and methane gas production were analyzed descriptively; meanwhile, the phenolic compound was analyzed with T-tests for the differences among treatments, using 4 replications. The result showed that the nutrient content of P. perforata had higher Organic Matter (OM), Crude Protein (CP), and Nitrogen-Free Extract (NFE) with the freeze-drying method (83.47 vs. 52.85%DM, 19.33 vs. 16.05%DM, and 54.16 vs 26.80%DM, respectively) and the mineral content was higher with shade-drying method (16.53 vs 47.15%DM). The shade-drying method decreased almost 50% of the phenolic compound compared to the freeze-drying method. The kinetic gas production of P. perforata had easily degraded, potentially degraded, and total degraded and fermented fractions at 5.88, 24.91, and 30.80 mL/200 mgDM, respectively; the methane gas production in 24 and 48 hours incubation at 1.80 and 3.01 mL/gDM. The study concluded that the freeze-drying method is better than the shade-drying method to dry P. perforata and this species' potential as ruminant feed and methane mitigation.



Abdulrazak SA, Fujihara T. 1999. Animal Nutrition: A Laboratory Manual. Laboratory of Animal Science, Faculty of Life and Environmental Science, Shimane University, Shimane.
AOAC. 2005. Official Methods of Analysis. 18th ed. AOAC International, Arlington.
Arvouet-Grand A, Vennat B, Pourrat A, Legret PJJB. 1994. Standardization of a propolis extract and identification of the main constituents. J Pharm Belg 49: 462-468.
Badmus UO, Taggart MA, Boyd KG. 2019. The effect of different drying methods on certain nutritionally important chemical constituents in edible brown seaweeds. J Appl Phycol 31: 3883-3897. DOI: 10.1007/s10811-019-01846-1.
Belanche A, Pinloche E, Preskett D, Newbold CJ. 2016. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol 92: fiv160. DOI: 10.1093/femsec/fiv160.
Boateng ID, Yang XM. 2021. Thermal and non-thermal processing affect Maillard reaction products, flavor, and phytochemical profiles of Ginkgo biloba seed. Food Biosci 41: 101044. DOI: 10.1016/j.fbio.2021.101044.
Chen X. 1994. Neway Program International Feed Resources Unit. Backburn, Rowett Research Institute, Aberdeen.
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Kim H, Lee SS, Lee SS. 2021. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci Rep 11: 24092. DOI: 10.1038/s41598-021-03356-y.
Erniati E, Zakaria FR, Prangdimurti E, Adawiyah DR. 2016. Potensi rumput laut: Kajian komponen bioaktif dan pemanfaatannya sebagai pangan fungsional. Acta Aquatic 3: 12-17. DOI: 10.29103/aa.v3i1.332. [Indonesian]
FAO. 2018. The Global Status of Seaweed Production, Trade and Utilization. Food and Agriculture Organization of the United Nations, Rome.
Fievez V, Babayemi O, Demeyer D. 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim Feed Sci Technol 123-124: 197-210. DOI: 10.1016/j.anifeedsci.2005.05.001.
Gaillard C, Bhatti HS, Novoa-Garrido M, Lind V, Roleda MY, Weisbjerg MR. 2018. Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Anim Feed Sci Technol 241: 210-222. DOI: 10.1016/j.anifeedsci.2018.05.003.
Gemeda BS, Hassen A. 2015. Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian Australas J Anim Sci 28: 188-199. DOI: 10.5713/ajas.14.0325.
Hagaggi NSA, Abdul-Raouf UM. 2022. Macroalga-associated bacterial endophyte bioactive secondary metabolites twinning: Cystoseira myrica and its associated Catenococcus thiocycli QCm as a model. World J Microbiol Biotechnol 38: 205. DOI: 10.1007/s11274-022-03394-2.
Hamid SS, Wakayama M, Soga T, Tomita M. 2018. Drying and extraction effects on three edible brown seaweeds for metabolomics. J Appl Phycol 30: 3335-3350. DOI: 10.1007/s10811-018-1614-z.
Haryatfrehni R, Dewi SC, Meilianda A, Rahmawati S, Sari IZR. 2015. Preliminary study the potency of macroalgae in Yogyakarta: Extraction and analysis of algal pigments from common Gunungkidul seaweeds. Proc Chem 14: 373-380. DOI: 10.1016/j.proche.2015.03.051.
Hidayah N, Kustantinah K, Noviandi CT, Astuti A, Hanim C, Suwignyo B. 2023. Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Vet Integr Sci 21: 229-238. DOI: 10.12982/vis.2023.018.
Jayanegara A, Sofyan A, Makkar H, Becker K. 2009. Kinetika produksi gas, kecernaan bahan organik dan produksi gas metana in vitro pada hay dan jerami yang disuplementasi hijauan mengandung tanin. Med Pet 32: 120-129. [Indonesian]
Kamiloglu S, Toydemir G, Boyacioglu D, Beekwilder J, Hall RD, Capanoglu E. 2016. A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit Rev Food Sci Nutr 56 (sup1): S110-S129. DOI: 10.1080/10408398. 2015.1045969.
Kinley RD, Martinez-Fernandez G, Matthews M K, de Nys R, Magnusson M, Tomkins NW. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod 259: 120836. DOI: 10.1016/j.jclepro.2020.120836.
Kinley RD, Vucko MJ, Machado L, Tomkins NW. 2016. Evaluation of the antimethanogenic potency and effects on fermentation of individual and combinations of marine macroalgae. Am J Plant Sci 07: 2038-2054. DOI: 10.4236/ajps.2016.714184.
Kustantinah, Hidayah N, Noviandi CT, Astuti A, Paradhipta DHV. 2022. Nutrients content of four tropical seaweed species from Kelapa Beach, Tuban, Indonesia and their potential as ruminant feed. Biodiversitas 23: 6191-6197. DOI: 10.13057/biodiv/d231213.
Lee-Rangel HA, Roque-Jiménez JA, Cifuentes-López RO, Álvarez-Fuentes G, Cruz-Gómez ADI, Martínez-García JA, Arévalo-Villalobos JI, Chay-Canul AJ. 2022. Evaluation of three marine algae on degradability, in vitro gas production, and CH4 and CO2 emissions by ruminants. Fermentation 8: 511. DOI: 10.3390/fermentation8100511.
Li Y, Fu X, Duan D, Liu X, Xu J, Gao X. 2017. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar Drugs 15: 49. DOI: 10.3390/md15020049.
Machado L, Magnusson M, Paul NA, Kinley R, de Nys R, Tomkins N. 2016. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J Appl Phycol 28: 3117-3126. DOI: 10.1007/s10811-016-0830-7.
Makkar HPS. 2003. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Springer Science & Business Media, Berlin. DOI: 10.1007/978-94-017-0273-7.
Meng Q, Fan H, Li Y, Zhang L. 2018. Effect of drying methods on physico-chemical properties and antioxidant activity of Dendrobium officinale. J Food Meas Charact 12: 1-10. DOI: 10.1007/s11694-017-9611-5.
Menke KH, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. J Anim Res 28: 7-55.
Mihaila AA, Glasson CRK, Lawton R, Muetzel S, Molano G, Magnusson M. 2022. New temperate seaweed targets for mitigation of ruminant methane emissions: An in vitro assessment. Appl Phycol 3: 274-284. DOI: 10.1080/26388081.2022.2059700.
Min BR, Parker D, Brauer D, Waldrip H, Lockard C, Hales K, Akbay A, Augyte S. 2021. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim Nutr 7: 1371-1387. DOI: 10.1016/j.aninu.2021.10.003.
Moreira R, Chenlo F, Sineiro J, Arufe S, Sexto S. 2015. Drying temperature effect on powder physical properties and aqueous extract characteristics of Fucus vesiculosus. J Appl Phycol 28: 2485-2494. DOI: 10.1007/s10811-015-0744-9.
Neoh YY, Matanjun P, Lee JS. 2021. Effects of various drying processes on Malaysian brown seaweed, Sargassum polycystum pertaining to antioxidants content and activity. Trans Sci Technol 8: 25-37.
Paga A, Agus A, Kustantinah, Budisatria IGS. 2021. Effect of drying methods on the mineral content of seaweed Sargasum sp. Livest Res Rural Dev 33 (3): 35.
Pirian K, Jeliani ZZ, Sohrabipour J, Arman M, Faghihi MM, Yousefzadi M. 2017. Nutritional and bioactivity evaluation of common seaweed species from the Persian Gulf. Iran J Sci Technol Trans A Sci 42: 1795-1804. DOI: 10.1007/s40995-017-0383-x.
Regal AL, Alves V, Gomes R, Matos J, Bandarra NM, Afonso C, Cardoso C. 2020. Drying process, storage conditions, and time alter the biochemical composition and bioactivity of the anti-greenhouse seaweed Asparagopsis taxiformis. Eur Food Res Technol 246: 781-793. DOI: 10.1007/s00217-020-03445-8.
Roque BM, Salwen JK, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows diet reduces enteric methane emission by over 50 percent. J Clean Prod 234: 132-138. DOI: 10.1016/j.jclepro.2019.06.193.
Ullah MR, Akhter M, Khan ABS, Yasmin F, Hasan MM, Bosu A, Haque MA, Islam M, Mahmud Y. 2023. Comparative estimation of nutritionally important chemical constituents of red seaweed, Gracilariopsis longissima, affected by different drying methods. J Food Qual 2023: 6623247. DOI: 10.1155/2023/6623247.
Uribe E, Vega-Gálvez A, García V, Pastén A, López J, Goñi G. 2018. Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J Appl Phycol 31: 1967-1979. DOI: 10.1007/s10811-018-1686-9.
van der Heijden PG, Lansbergen R, Axmann H, Soethoudt H, Tacken G, van den Puttelaar J, Rukminasari N. 2022. Seaweed in Indonesia: Farming, Utilization and Research. Wageningen Centre for Development Innovation, Wageningen. DOI: 10.18174/578007.
Waters TJ, Lionata H, Prasetyo Wibowo T, Jones R, Theuerkauf S, Usman S, Amin I, Ilman M. 2019. Coastal Conservation and Sustainable Livelihoods through Seaweed Aquaculture In Indonesia: A Guide for Buyers, Conservation Practitioners, and Farmers, Version 1. The Nature Conservancy, Arlington VA and Jakarta.