Incidence of methicillin-resistant Staphylococcus aureus in wastewater and its survival after discharge from two hospitals in Akure, Nigeria

##plugins.themes.bootstrap3.article.main##

TOLULOPE EMORUWA
OLUFUMILOLA OMOYA

Abstract

Abstract. Emoruwa T, Omoya O. 2024. Incidence of methicillin-resistant Staphylococcus aureus in wastewater and its survival after discharge from two hospitals in Akure, Nigeria. Nusantara Bioscience 16: 119-129. The prevalence of Methicillin-Resistant Staphylococcus aureus (MRSA), a silent infection-causing bacteria that is resistant to several antibiotics is rising in the population, increasing morbidity and mortality rates. The goal of this study was to find MRSA in hospital wastewater from the University of Medical Science Teaching Hospital and University Health Center, The Federal University of Technology Akure, Nigeria. Wastewater were collected from outlets in different wards, and pipe-borne water was collected as a control. The wastewater underwent bacteriological analysis using membrane filtration, identifying all the bacteria isolates. Zones of inhibition were interpreted to screen S. aureus isolates for antibiotic susceptibility. The mecA gene was molecularly identified in S. aureus isolates using bacterial DNA extraction and polymerase chain reaction. The plasmid profile and MRSA survivability at various pH, temperature, and salt concentrations were examined as well. The total bacterial counts in wastewater collected from UNIMEDTH and FUTA Health Center ranged from 49.72±0.86 CFU/100 mL (pipe-borne water) to 877.91±1.55 CFU/100 mL (Accident and Emergency ward) and 73.71±0.72 CFU/100 mL (pipe-borne water) to 422.05±1.55 CFU/100 mL (Wound treatment ward) respectively, while the total staphylococcal counts in UNIMEDTH and FUTA Health Center ranged from 0.00±0.00 CFU/100 mL (pipe-borne water) to 220.14±1.06 CFU/100 mL (Medical Laboratory Science Laboratory) and 1.02±0.11 CFU/100ml (pipe-borne water) to 60.11±0.11 CFU/100 mL (doctors’ station) respectively. Isolates of S. aureus were more resistant to ampiclox 10 (62.50%), oxacillin 7 (43.75%), zinnacef 10 (62.50%), and amoxicillin 8 (50.00%). The incidence of MRSA in hospital wastewater and its survival under different environmental conditions could present a public health challenge as the discharge of untreated wastewater could contaminate different water bodies.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Achak M, Bakri SA, Chhiti Y, Alaoui FEM, Barka N, Boumy W. 2021. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci Total Environ 761: 143192. DOI: 10.1016/j.scitotenv.2020.143192.
Adachi F, Sekizuka T, Yamato M, Fukuoka K, Yamaguchi N, Kuroda M, Kawahara R. 2016. Characterization of fricarbapenemase-producing enterobacter spp. Isolated from a hospital and the environment in Osaka, Japan. J Antimicrob Chemother 76: 3061-3062. DOI: 10.1093/jac/dkab284.
Akindolire MA Babalola OO, Ateba CN. 2015. Detection of antibiotic resistant Staphylococcus aureus from milk: A public health implication. Intl J Environ Res Public Health 12 (9): 10254-10275. DOI: 10.3390/ijerph120910254.
Akya A, Chegenelorestani R, Shahvaisi-Zadeh J, Bozorgomid A. 2020. Antimicrobial resistance of Staphylococcus aureus isolated from hospital wastewater in Kermanshah, Iran. Risk Manag Health Policy 13: 1035-1042. DOI: 10.2147/RMHP.S261311.
Al Aukidy M, Al Chalabi S, Verlicchi P. 2017. Hospital wastewater treatments adopted in Asia, Africa, and Australia. In: Verlicchi P (eds). Hospital Wastewaters. The Handbook of Environmental Chemistry, vol 60. Springer, Cham. DOI: 10.1007/698_2017_5.
Azuma T, Murakami M, Sonoda Y, Ozaki A, Hayashi T. 2022. Occurrence and quantitative microbial risk assessment of Methicillin-Resistant Staphylococcus aureus (MRSA) in a Sub-Catchment of the Yodo River Basin, Japan. Antibiotics 11: 1355. DOI: 10.3390/antibiotics11101355.
Cheesbrough M. 2014. District Laboratory Practice in Tropical Countries. 2nd Ed. Cambridge University Press, Cambridge, UK. DOI: 10.1017/CBO9780511543470.
Committee for Clinical Laboratory Standards (CLSI). 2017. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Seventh Informational Supplement. CLSI document M100-S27 Wayne, PA.
Fawole, M. O. and Oso, B. A. 2004. Characterization of Bacteria: Laboratory Manual of Microbiology. 4th Edition, Spectrum Book Ltd., Ibadan, Nigeria, 24-33. DOI. 10.1007/0-387-30741-9_4.
Garcia AB, Vinuela-Prieto JM, Lopez-Gonzalez L, Candel FJ. 2017. Correlation between resistance mechanisms in Staphylococcus aureus and cell wall and septum thickening. Infect Drug Resist 10: 353-356. DOI. 10.2147/IDR.S146748.
Haaber J, Penadés JR, Ingmer H. 2017. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 25 (11): 893-890 DOI: 10.1016/j.tim.2017.05.011.
Hiramatsu K, Katayama Y, Yuzawa H, Ito T. 2002. Molecular genetics of methicillin-resistant Staphylococcus aureus. Intl J Med Microbiol 292 (2): 67-74. DOI: 10.1078/1438-4221-00192.
Kumar S, Lekshmi M, Parvathi A, Nayak BB, Varela MF. 2017. Antibiotic resistance in seafood?borne pathogens. In: Singh OV (eds). Foodborne Pathogens and Antibiotic Resistance, First Edition. John Wiley & Sons, Hoboken, New Jersey. DOI: 10.1002/9781119139188.ch17.
López A, Rodríguez-Chueca J, Mosteo R, Gómez J, Rubio E, Goñi P, Ormad MP. 2019. How does urban wastewater treatment affect the microbial quality of treated wastewater? Proc Safe Environ Protec 130: 22-30. DOI: 10.1016/j.psep.2019.07.016.
Mackul’ak T, Cverenkárová K, Vojs Sta?nová A, Fehér M, Tamáš M, Škulcová AB, Gál M, Naumowicz M, Špalková V, Bírošová L. 2021. Hospital wastewater—Source of specific micropollutants, antibiotic-resistant microorganisms, viruses, and their elimination. Antibiotics 10: 1070. DOI.10.3390/antibiotics10091070.
Marwan AB, Gabrielle CH, Pauline FT, Corinne BL, Djamel DR. 2014. Effects of growth, temperature, surface type, and incubation time on resistance of Staphylococcus aureus biofilms to disinfectants. Appl Microb Cell Physiol 98: 2597-2607. DOI: 10.1007/s00253-013-5479-4.
Mehanni MM, Gadow SI, Alshammari, FA, Modafer Y, Ghanem KZ, El-Tahtawi NF, Homosy RF, Hesham AEL. 2023. Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation. Front Microbiol 14: 1141383. DOI: 10.3389/fmicb.2023.1141383.
Meng XZ, Venkatesan AK, Ni YL, Steele JC, Wu LL, Bignert A. 2016. Organic contaminants in Chinese sewage sludge: a meta-analysis of the literature of the past 30 years. Environ Sci Technol 50: 5454-5466. DOI: 10.1021/acs.est.5b05583.
Mesdaghinia A, Nadafi K, Nabizadeh NR, Saeidi R, Zamanzade M. 2009. Wastewater characteristics and appropriate method for wastewater management in the hospitals. Iran J Public Health 38: 34-40.
Natàlia C, Tobias O, Lucas S, Alexander E. 2019. Comparison of four DNA extraction methods for comprehensive assessment of 16S rRNA bacterial diversity in marine biofilms using high-throughput sequencing. FEMS Microbiol Lett 364: 14. DOI: 10.1093/femsle/fnx139.
Oladipo AO, Oladipo OG, Cornelius C. 2019. Multi-drug resistance traits of methicillin-resistant Staphylococcus aureus and other Staphylococcal species from clinical and environmental sources. J Water Health 17 (6): 930-943. DOI: 10.2166/wh.2019.177.
Olutiola PO, Famurewa O, Sonntag HG. 2018. An Introduction to General Microbiology, A Practical Approach. Heidelberger Verlagsanstalt und Druckerei GmbH, Heidelberg. DOI: 10.1007/978-3-662-00449-4.
Rice EW, Baird RB, Eaton AD, Clesceri LS. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment. Sci Total Environ 447: 345-360. DOI: 10.1007/978-3-662-00449-4.
Rowe WP, Baker-Austin C, Verner-Jeffreys DW, Ryan JJ, Micallef C, Maskell DJ, Pearce GP. 2017. Overexpression of antibiotic resistance genes in hospital effluents over time. J Antimicrob Chemother 72: 1617-1623. DOI.10.1093/jac/dkx017.
Sharkir ZM, Alhatami AO, Khudhair YI, Abdulwahab HM. 2021. Antibiotic resistance profile and multiple antibiotic resistance index of Campylobacter species isolated from poultry. Arch Razi Inst 76 (6): 1677-1686. DOI: 10.22092/ARI.2021.356400.1837.
Tchobanoglous G, Burton F, Stensel H. 2004. Wastewater Engineering-Treatment and Reuse. McGraw-Hill Education, New York.
Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. 2015. Staphylococcus aureus infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin Microbiol Rev 28 (3): 603-661. DOI: 10.1128/cmr.00134-14.
Verlicchi P, Al Aukidy M, Zambello E. 2015. What have we learned from worldwide experiences on the management and treatment of hospital effluent? An overview and a discussion on perspectives. Sci Total Environ 514: 467-491. DOI: 10.1016/j.scitotenv.2015.02.020.
Verlicchi P, Galletti A, Petrovic M, Barcelo D. 2010. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J Hydrol 389: 416-428. DOI: 10.1016/j.jhydrol.2010.06.005.
World Health Organization (WHO). 2016. Guidelines for Drinking-Water Quality 9th Ed. Vol. Geneva Pp. 1-16una. DOI: 10.3390/healthcare11020242.
Yuan T, Pia Y. 2023. Hospital wastewater as hotspots for pathogenic microorganisms spread into aquatic environment. Front Environ Sci 10: 1734. DOI: 10.3389/fenvs.2022.1091734.
Zheng HS, Guo WQ, Wu QL, Ren NQ, Chang JS. 2018. Electroperoxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction. Environ Intl 115: 70-78. DOI: 10.1016/j.envint.2018.02.043.