Molecular identification of Scopellaria marginata from East Java, Indonesia, based on trnL-UAA and trnL-trnF intergenic spacer regions

##plugins.themes.bootstrap3.article.main##

TURHADI
BRILIYAN NATALINA SUDARJAYANTI
FIFI MAR’ATUN SOLIHAH
RODIYATI AZRIANINGSIH
MUFIDAH AFIYANTI
ESTRI LARAS ARUMINGTYAS

Abstract

Abstract. Turhadi, Sudarjayanti BN, Solihah FM, Azrianingsih R, Afiyanti M, Arumingtyas EL. 2024. Molecular identification of Scopellaria marginata from East Java, Indonesia, based on trnL-UAA and trnL-trnF intergenic spacer regions. Nusantara Bioscience 16: 111-118. Scopellaria marginata (Blume) W.J.de Wilde & Duyfjes is a wild species in Cucurbitaceae, which was recorded as new expanding their distribution in East Java, Indonesia. The trnL-UAA and trnL-trnF intergenic spacer (IGS) sequences of Scopellaria are still limited in publicly accessible databases. This study aimed to evaluate the trnL-UAA and trnL-trnF IGS sequences of S. marginata from Malang, East Java. Total DNA of S. marginata was used to amplify the trnL-UAA and trnL-trnF IGS region. Then, the PCR products are sequenced using bi-directional Sanger dideoxy sequencing to obtain the DNA sequence of those two regions. The results showed that the partial sequences of S. marginata for trnL-UAA ranged from 528 to 571 bp, while the sequence for trnF-trnL IGS ranged from 434 to 445 bp. The S. marginata samples are similar to S. marginata in the database with similarity levels of 97.14-97.50% and 98.36-98.61%, respectively, based on the trnL-UAA and trnL-trnF IGS. Both trnL-UAA and trnL-trnF IGS showed a Correct Assignment Rate (CAR) of 100% for S. marginata. Two-dimensional DNA barcoding with lengths 505 and 417 bp for trnL-UAA and trnL-trnF IGS proposed as specific barcodes for S. marginata. These results prove that Malang, East Java was an additional distribution area for S. marginata in Indonesia.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Aguirre-Dugua X, Castellanos-Morales G, Paredes-Torres LM, Hernández-Rosales HS, Barrera-Redondo J, Sánchez-de la Vega G, Tapia-Aguirre F, Ruiz-Mondragón KY, Scheinvar E, Hernández P, Aguirre-Planter E, Montes-Hernández S, Lira-Saade R, Eguiarte LE. 2019. Evolutionary dynamics of transferred sequences between organellar genomes in Cucurbita. J Mol Evol 87 (9-10): 327-342. DOI: 10.1007/s00239-019-09916-1.
Almutairi ZM. 2022. Genetic diversity and phylogeny of pearl millets [Pennisetum glaucum (L.) R. Br.] based on chloroplast trnL?F region. Genet Resour Crop Evol 69: 2849-2859. DOI: 10.1007/s10722-022-01404-8.
Arumingtyas EL, Turhadi, Azrianingsih R, Afiyanti M, Pratami MP, Sudarjayanti BN, Solihah FM. 2023. Rekaman baru Scopellaria marginata (Cucurbitaceae) dari Malang, Jawa Timur, Indonesia. J Bio Unud 27(2): 183-190. DOI: 10.24843/JBIOUNUD.2023.v27.i02.p06. [Indonesian]
Bunawan H, Yen CC, Yaakop S, Noor NM. 2017. Phylogenetic inferences of Nepenthes species in Peninsular Malaysia revealed by chloroplast (trnL intron) and nuclear (ITS) DNA sequences. BMC Res Notes 10 (1): 67. DOI: 10.1186/s13104-017-2379-1.
Cai Y, Li P, Li X, Zhao J, Chen H, Yang Q, Hu H. 2016. Converting Panax ginseng DNA and chemical fingerprints into two-dimensional barcode. J Ginseng Res 41: 339-346. DOI: 10.1016/j.jgr.2016.06.006.
Coughlan P, Carolan JC, Hook ILI, Kilmartin L, Hodkinson TR. 2020. Phylogenetics of Taxus using the internal transcribed spacers of nuclear ribosomal DNA and plastid trnL-F Regions. Horticulturae 6 (1): 19. DOI: 10.3390/horticulturae6010019.
de Vere N, Rich TCG, Trinder SA, Long C. 2015. DNA barcoding for plants. In: Batley J (eds). Plant Genotyping. Methods in Molecular Biology. Humana Press, New York. DOI: 10.1007/978-1-4939-1966-6_8.
de Wilde WJJO, Duyfjes BEE. 2006. Scopellaria, a new genus name in Cucurbitaceae. Blumea 51 (2): 297-298. DOI: 10.3767/000651906X622238.
de Wilde WJJO, Duyfjes BEE. 2010. Flora Malesiana Cucurbitaceae Series 1 Vol. 19. Netherlands Centre for Biodiversity Naturalis (NHN). Leiden University, Leiden.
Feng J, Liao F, Kong D, Ren R, Sun T, Liu W, Yin Y, Ma H, Tang J, Li G. 2022. Genetic diversity of the cultivated Salvia miltiorrhiza populations revealed by four intergenic spacers. PLoS ONE 17 (4): e0266536. DOI: 10.1371/journal.pone.0266536.
Gogoi B, Wann SB, Saikia SP. 2020. DNA barcodes for delineating Clerodendrum species of North East India. Sci Rep 10: 13490. DOI: 10.1038/s41598-020-70405-3.
Hocaoglu-Ozyigit A, Ucar B, Altay V, Ozyigit II. 2022. Genetic diversity and phylogenetic analyses of turkish cotton (Gossypium hirsutum L.) lines using ISSR markers and chloroplast trnL-F regions. J Nat Fibers 19 (5): 1837-1850. DOI: 10.1080/15440478.2020.1788493.
Hsu W-K, Lee S-C, Lu P-L. 2019. A useful technical application of the identification of nucleotide sequence polymorphisms and gene resources for Cinnamomum osmophloeum Kaneh. (Lauraceae). Forests 10 (4): 306. DOI: 10.3390/f10040306.
Ismail M, Ahmad A, Nadeem M, Javed MA, Khan SH, Khawaish I, Sthanadar AA, Qari SH, Alghanem SM, Khan KA, Khan MF, Qamer S. 2020. Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi J Biol Sci 27 (12): 3735-3742. DOI: 10.1016/j.sjbs.2020.08.020.
Jiang S, Chen F, Qin P, Xie H, Peng G, Li Y, Guo X. 2022. The specific DNA barcodes based on chloroplast genes for species identification of Theaceae plants. Physiol Mol Biol Plants 28(4): 837-848. DOI: 10.1007/s12298-022-01175-7.
Jiang Z, Zhang M, Kong L, Bao Y, Ren W, Li H, Liu X, Wang Z, Ma W. 2023. Identification of Apiaceae using ITS, ITS2 and psbA-trnH barcodes. Mol Biol Rep 50 (1): 245-253. DOI: 10.1007/s11033-022-07909-w.
Khan SA, Baeshen MN, Ramadan HA, Baeshen NA. 2017. Emergence of plastidial intergenic spacers as suitable DNA barcodes for arid medicinal plant Rhazya stricta. Am J Plant Sci 8: 1774-1789. DOI: 10.4236/ajps.2017.88121.
Kishor R, Sharma GJ. 2018. The use of the hypervariable P8 region of trnL (UAA) intron for identification of orchid species: evidence from restriction site polymorphism analysis. PLoS ONE 13 (5): 1-20. DOI: 10.1371/journal.pone.0196680.
Kocyan A, Zhang LB, Schaefer H, Renner SS. 2007. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet Evol 44(2): 553-577. DOI: 10.1016/j.ympev.2006.12.022.
Kress WJ. 2017. Plant DNA barcodes: Applications today and in the future. J Syst Evol 55 (4): 291-307. DOI: 10.1111/jse.12254.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547-1549. DOI: 10.1093/molbev/msy096.
Kwon YE, Yu HJ, Baek S, Kim GB, Lim KB, Mun JH. 2017. Development of gene-based identification markers for Phalaenopsis' KS Little Gem' based on comparative genome analysis. Hortic Environ Biotechnol 58 (2): 162-169. DOI: 10.1007/s13580-017-0189-y.
Li H, Xiao W, Tong T, Li Y, Zhang M, Lin X, Zou X, Wu Q, Guo X. 2021. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci Rep 11: 1424. DOI: 10.1038/s41598-021-81087-w.
Lv YN, Yang CY, Shi LC, Zhang ZL, Xu AS, Zhang LX, Li XL, Li HT. 2020. Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes. Chin J Nat Med 18 (8): 594-605. DOI: 10.1016/S1875-5364(20)30071-6.
Ma S, Lv Q, Zhou H, Fang J, Cheng W, Jiang C, Cheng K, Yao H. 2017. Identification of traditional she medicine shi-liang tea species and closely related species using the ITS2 barcode. Appl Sci 7 (3): 195. DOI: 10.3390/app7030195.
Mukhopadhyay CS, Choudhary RK, Iquebal MA. 2018. Basic Applied Bioinformatics. John Wiley & Sons, Inc, Hoboken.
Nadeem MA, Nawaz MA, Shahid MQ, Do?an Y, Comertpay G, Y?ld?z M, Hatipo?lu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. 2018. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32 (2): 261-285. DOI: 10.1080/13102818.2017.1400401.
Nuzhdina NS, Bondar AA, Dorogina OV. 2018. New data on taxonomic and geographic distribution of the trnL-UAA intron deletion of chloroplast DNA in Hedysarum L. (Fabaceae L.). Russ J Genet 54: 1282-1292. DOI: 10.1134/S1022795418110108.
Plant of the World Online (POWO). 2024. Cucurbitaceae Juss. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30000781-2.
Roslim DI. 2018. Pandan (Pandanus sp.), rotan (Calamus sp.), and rengas (Gluta sp) from Kajuik Lake, Riau Province, Indonesia. Braz Arch Biol Technol 61: e18160419. DOI: 10.1590/1678-4324-2018160419.
Sarra C, Soumaya R-C, Zined M, Khaled S, Noureddine C, Khaled C. 2015. Chloroplast DNA analysis of Tunisian pistachio (Pistacia vera L.): sequence variations of the intron trnL (UAA). Sci Hortic 191: 57-64. DOI: 10.1016/j.scienta.2015.04.037.
Schaefer H, Nee MH. 2012. Melothria domingensis (Cucurbitaceae), an endangered Caribbean endemic, is a Cayaponia. PhytoKeys 18: 45-60. DOI: 10.3897/phytokeys.18.3914.
Schaefer H, Renner SS. 2011. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60 (1): 122-138. DOI: 10.1002/tax.601011.
Sen F, Uncu AO, Uncu AT, Erdeger SN. 2020. The trnL (UAA)-trnF (GAA) intergenic spacer is a robust marker of green pea (Pisum sativum L.) adulteration in economically valuable pistachio nuts (Pistacia vera L.). J Sci Food Agric 100 (7): 3056-3061. DOI: 10.1002/jsfa.10336.
Sevindik E, Bozkurt M, Yilmaz M, ?enyüz E, Paksoy MY. 2023. Molecular characterization of Dittrichia viscosa (L.) greuter (Asteraceae) populations revealed by ISSR markers and chloroplast (CpDNA) trnL intron sequences. Genetika 55 (1): 217-228. DOI: 10.2298/GENSR23010217S.
Sevindik E, Murathan ZT, Sevindik M. 2020. Molecular genetic diversity of Prunus armeniaca L. (Rosaceae) genotypes by RAPD, ISSR-PCR, and chloroplast DNA (cpDNA) trnL-F sequences. Intl J Fruit Sci 20 (S3): S1652-S1661. DOI: 10.1080/15538362.2020.1828223.
Sevindik E, Okan K. 2020. Genetic diversity and phylogenetic analyses of Laurus nobilis L. (Lauraceae) populations revealed chloroplast (cpDNA) trnL intron and trnL-F region. Intl J Fruit Sci 20 (S2): S82-S93. DOI: 10.1080/15538362.2019.1707745.
Sevindik E, Yalçin K. 2018. Phylogenetic analysis of some Citrus L. (Rutaceae) taxa in Turkey based on chloroplast (cpDNA) trnL intron and trnl-f DNA sequences. Genetika 50 (3): 1035-1044. DOI: 10.2298/GENSR1803035S.
Simpson MG. 2019. Plant Systematics, 3rd edition. Academic Press, Oxford. DOI: 10.1016/B978-0-12-812628-8.50001-8.
Sitorus RE, Rugayah, Navia ZI. 2019. Manajemen herbarium dan pengenalan jenis-jenis Cucurbitaceae yang jarang ditemukan di Sumatra. Biologica Samudra 1 (2): 48-55. [Indonesian]
Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35 (3): e14. DOI: 10.1093/nar/gkl938.
Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17: 1105-1109. DOI: 10.1007/BF00037152.
Tekpinar AD, Erkul SK, Aytaç Z, Kaya Z. 2016. Phylogenetic relationships among native Oxytropis species in Turkey using the trnL intron, trnL-F IGS, and trnV intron cpDNA regions. Turkish J Bot 40: 472-479. DOI: 10.3906/bot-1506-45.
Trivedi S, Rehman H, Saggu S, Panneerselvam C, Ghosh SK. 2020. DNA Barcoding and Molecular Phylogeny, 2nd edition. Springer, New York. DOI: 10.1007/978-3-030-50075-7.
Tsai LC, Yu YC, Hsieh HM, Wang JC, Linacre A, Lee JC. 2006. Species identification using sequences of the trnL intron and the trnL-trnF IGS of chloroplast genome among popular plants in Taiwan. Forensic Sci Int 164 (2-3): 193-200. DOI: 10.1016/j.forsciint.2006.01.007.
Wang J, Yan Z, Zhong P, Shen Z, Yang G, Ma L. 2022. Screening of universal DNA barcodes for identifying grass species of Gramineae. Front Plant Sci 13: 998863. DOI: 10.3389/fpls.2022.998863.
Yao R, Guo R, Liu Y, Kou Z, Shi B. 2022. Identification and phylogenetic analysis of the genus Syringa based on chloroplast genomic DNA barcoding. PLoS ONE 17 (7): e0271633. DOI: 10.1371/journal.pone.0271633.
Yu N, Gu H, Wei Y, Zhu N, Wang Y, Zhang H, Zhu Y, Zhang X, Ma C, Sun A. 2016. Suitable DNA barcoding for identification and supervision of Piper kadsura in chinese medicine markets. Molecules 21 (9): 1221. DOI: 10.3390/molecules21091221.
Yu N, Wei YL, Zhang X, Zhu N, Wang YL, Zhu Y, Zhang HP, Li FM, Yang L, Sun JQ, Sun AD. 2017. Barcode ITS2: A useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market. Sci Rep 7 (1): 5037. DOI: 10.1038/s41598-017-04674-w.
Yulita KS, Susilowati A, Rachmat HH, Susila, Hidayat A, Dwiyanti FG. 2022. Molecular identification of Eurycoma longifolia Jack from Sumatra, Indonesia using trnL-F region. Biodiversitas 23 (3): 1374-1382. DOI: 10.13057/biodiv/d230323.
Yulita KS. 2013. Secondary structures of chloroplast trnL intron in Dipterocarpaceae and its implication for the phylogenetic reconstruction. Hayati J Biosci 20 (1): 31-39. DOI: 10.4308/hjb.20.1.31.