Growth and secondary metabolites content of chloroform extract of Chlorella sp. and Chlorella sorokiniana cultured on chicken broiler waste media
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Susanty D, Oksari AA. 2020. Growth and secondary metabolites content of chloroform extract of Chlorella sp. and Chlorella sorokiniana cultured on chicken broiler waste media. Nusantara Bioscience 12: 28-32. Intensive chicken broiler farms create waste in the environment. Chicken Broiler Waste (CBW) was used as culture media for Chlorella sp. InaCC M39 and Chlorella sorokiniana InaCC M38 at various concentrations (2, 4, 6, 8, and 10%), and compared to AF6 media. The growth of Chlorella was observed every 48 hours for 10 days by counting the number of cells using a hemocytometer. The chloroform extract of Chlorella sp. and C. sorokiniana were analyzed for their phytochemical content to determine the presence of alkaloids, flavonoids, saponin, steroids, and tannin. The results showed that 2% of CBW media was the best medium for the growth of Chlorella with nitrogen (N), phosphorus (P), and potassium (K) content was 0.01% N; 0.01% P; 0.06% K respectively. The highest specific growth rate of Chlorella sp. on 2% CBW medium was on the 8th day of culture (0.8133) with cell density of 1.6 x 106 cells/mL, while the highest specific growth rate of Chlorella sorokiniana was on the 6th day (0.8907) with cell density of 2.99 x 107 cells/mL. The chloroform extract of the biomass of Chlorella sorokiniana contained steroid and saponin
2019-01-01
##plugins.themes.bootstrap3.article.details##
Azaman, S. N. A., Nagao, N., Yusoff, F. M., Tan, S. W., & Yeap, S. K. 2017. A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. PeerJ. doi:10.7717/peerj.3473
Azhar, A., Dharma, A., Nasir, N., & Chaidir, Z. 2017. Integrasi bioremediasi limbah peternakan sapi dan kultivasi mikroalga chlorella vulgaris dan chlorella pyrenoidosae. J Katalisator, 2(2): 67-78. doi:http://doi.org/10.22216/jk.v2i2.2127.
Barkia, I., Saari, N., & Manning, S. R. 2019. Microalgae for High-Value Products Towards Human Health and Nutrition. Marine Drugs, 17(5): 1-29. doi:10.3390/md17050304.
Brembu, T., Mühlroth, A., Alipanah, L., & Bones, A. M. 2017. The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society. Biological Sciences, 372(1728): 1-10. doi:10.1098/rstb.2016.0406.
Chen, H., Zheng, Y., Zhan, J., He, C., & Wang, Q. 2017. Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. Biotechnology for Biofuels, 10(1). doi:10.1186/s13068-017-0839-4.
Guerra-Renteria, A. S., García-Ramírez, M. A., Gómez-Hermosillo, C., Gómez-Guzmán, A., González-García, Y., & González-Reynoso, O. 2019. Metabolic Pathway Analysis of Nitrogen and Phosphorus Uptake by the Consortium between C. vulgaris and P. aeruginosa. International Journal of Molecular Sciences, 20(8). doi:10.3390/ijms20081978
Cheunbarn, S., & Peerapornpisal, Y. 2010. Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. Int J Agric Biol., 12(4): 586-590.
Dineshkumar, R., Narendran, R., Jayasingam, P., Sampathkumar, P. 2017. Cultivation and Chemical Composition of Microalgae Chlorella vulgaris and its Antibacterial Activity against Human Pathogens. Journal of Aquaculture & Marine Biology, 5(3).
Djaghoubi, A., Bouhoun, M. D., Said, S. H., Saggaï, A., Sobti, S., Aissa, B. H. 2015. Growth and Nitrogen Removal Efficiency as Protein Content of Spirulina from Tertiary Municipal Wastewater in Ouargla (Algerian Bas-Sahara). Energy Procedia, 74: 1402-1409. oi:10.1016/j.egypro.2015.07.786
De Morais, M. G., Vaz, B. da S., de Morais, E. G., & Costa, J. A. V. 2015. Biologically Active Metabolites Synthesized by Microalgae. BioMed Research International, 1–15. doi:10.1155/2015/835761
Edmundson, S., Huesemann, M., Kruk, R., Lemmon, T., Billing, J., Schmidt, A., & Anderson, D. 2017. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction. Algal Research, 26: 415–421. doi:10.1016/j.algal.2017.07.016
Farooq, W., Lee, Y. C., Ryu, B. G., et al. 2013.Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol., 132(2013): 230-238. doi:10.1016/j.biortech.2013.01.034
Feroz, B. 2018. Saponins from Marine Macroalgae: A Review. Journal of Marine Science: Research & Development, 08 (04). doi:10.4172/2155-9910.1000255
Garno, Y. S., Komarawidjaja, W., & Susanto, J. 2014. Kajian pertumbuhan Chlorella sp pada Limbah Cair Industri Susu. J Tek Ling., 15(1): 9-14.
Ibañez, E., & Cifuentes, A. 2013. Benefits of using algae as natural sources of functional ingredients. Journal of the Science of Food and Agriculture, 93(4): 703–709. doi:10.1002/jsfa.6023.
Ikaran, Z., Suárez-Alvarez, S., Urreta, I. Castañón, S. 2015. The effect of nitrogen limitation on the physiology and metabolism of chlorella vulgaris var L3. Algal Research, 10 (2015): 134–144.
Kalla, N. & Khan, S. 2016. Effect of nitrogen, phosphorus concentrations, pH and salinity ranges on growth, biomass and lipid accumulation of chlorella vulgaris. Int J Pharm Sci Res 7(1): 397-05.doi: 10.13040/IJPSR.0975-8232.7 (1).397-05.
Lestari, A. P., Haeruddin, Ain C. 2014. Karakteristik dan Toksisitas Limbah Cair dari Kegiatan Perikanan di Pasar Kobong, Semarang Terhadap Chlorella sp. Diponegoro J Maquares., 3(4): 201-207.
Lizzul, A. M., Hellier, P., Purton, S., Baganz, F., Ladommatos, N., & Campos, L. 2014. Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresource Technology, 151: 12–18. doi:10.1016/j.biortech.2013.10.040
Lizzul, A. M., Lekuona-Amundarain, A., Purton, S., Campos, L. C. 2018. Characterization of Chlorella sorokiniana, UTEX 1230. Biology, 7 (25): 1-12.
Mahdi, M. Z., Titisari, Y. N., & Hadiyanto. 2012. Evaluasi Pertumbuhan Mikroalga Dalam Medium Pome?: Variasi Jenis Mikroalga , Medium Dan Waktu Penambahan Nutrient. J Teknol Kim dan Ind., 1(1): 284-291.
Manalu, S. 2010. Karakterisasi Pertumbuhan Mikroalga Dan Eliminasi Nutrien Dari Limbah Cair Peternakan Dengan Sistem Semi Kontinu. Skripsi. Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor.
Patras, D., Moraru, C., Socaciu, C. 2018. Screening of Bioactive Compounds Synthesized By Microalgae: A Progress Overview on Extraction and Chemical Analysis. Studia Ubb Chemia, LXIII, 1: 21-35. DOI:10.24193/subbchem.2018.1.02.
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. 2017. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2017.11.003
Selvika, Z., Kusuma, A. B., Herliany N. E., Negara B. F. S. P. 2016. Pertumbuhan Chlorella sp. pada beberapa konsentrasi limbah batubara. Depik, 5(3): 107-112. doi:10.13170/depik.5.3.5576
Simamora, L. A., Sudarno, & Istirokhatun, T. 2017. Kultivasi Mikroalga Sebagai Metode Pengolahan Dalam Menyisihkan Kadar Cod Dan Amonium Pada Limbah Cair Tahu. Jurnal Teknik Lingkungan, 6 (1): 1-14.
Singh, D., Nedbal, L., & Ebenhöh, O. (2018). Modelling phosphorus uptake in microalgae. Biochemical Society Transactions, 46(2): 483–490. doi:10.1042/bst20170262
Syaichurrozi, I., & Jayanudin. 2016. Potensi Limbah Cair Tahu sebagai Media Tumbuh Spirulina platensis. J Integr Proses. 6(2): 64-68.
Syed, S., Arasu, A., & Ponnuswamy, I. 2015. The Uses of Chlorella Vulgaris as Antimicrobial Agent and as a Diet: the Presence of Bio-active Compounds which caters the Vitamins, Minerals in General. International Journal of Bio-Science and Bio-Technology, 7 (1): 185-190. http://dx.doi.org/10.14257/ijbsbt.2015.7.1.19
Triastuti, R. J., Mubarak, A. S., Prabandari, L. (2011). Pengaruh Penambahan Pupuk Bintil Akar Kacang Tanah Sebagai Sumber Nitrogen Dan Fosfor Terhadap Populasi Chlorella sp. Jurnal Ilmiah Perikanan dan Kelautan, 3 (2): 157-163.
Zulfarina, Sayuti, I., Putri, H. T. 2013. Potential Utilization of Algae Chlorella pyrenoidosa for Rubber Waste Management. In: Prosiding Semirata FMIPA Universitas Lampung: 511-520.
Xie, M., Qiu, Y., Song, C., Qi, Y., Li, Y., & Kitamura, Y. 2018. Optimization of Chlorella sorokiniana cultivation condition for simultaneous enhanced biomass and lipid production via CO 2 fixation. Bioresource Technology Reports, 2, 15–20. doi:10.1016/j.biteb.2018.03.006