The suitability assessment of the tree species in the urban parks and urban forest in Kediri City, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

WHISNU FEBRY AFRIANTO
SUSANTI INDRIYA WATI
TAUFIQ HIDAYATULLAH

Abstract

Abstract. Afrianto WF, Wati SI, Hidayatullah T. 2021. The suitability assessment of the tree species in the urban parks and urban forest in Kediri City, East Java, Indonesia. Nusantara Bioscience 13: 131-139. Kediri has several urban parks and an urban forest as green open space (GOS), which have essential roles in economical, social, aesthetical, and ecological aspects. Generally, urban trees provide ecosystem services, such as carbon sequestration, stormwater attenuation, energy conservation, habitat for wildlife, and air, water, and noise pollutants reduction. The present study aimed to (i) determine tree diversity in five urban parks and an urban forest in Kediri City and (ii) evaluate the suitability of tree species based on three indicators (silviculture, management, and aesthetic). This study was conducted in five urban parks and one urban forest in Kediri City. The suitability assessment was carried out through a literature review. The results showed that 29 tree species belonging to 17 families were found in the study sites, with the family Fabaceae being the most dominant one with five species. The number of exotic tree species (17) was higher than that of the native ones (12). The suitability assessment results showed that 21 tree species had a high score of 39-44, and only eight urban tree species had a medium score of 36-38. The urban parks and forests in Kediri were managed to conserve germplasm, recreation, and protection. Therefore, the shapes had to be clumped and lined. This study will contribute information to be used as guidance for urban tree management and policy framework.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Afrianto WF, Tamnge F. 2015. Conceptual foundation to develop eco-smart city in Indonesia. In: Fernadez JC, Wulandari D, Damayanti EK (eds). Proceedings of SEAMEO BIOTROP Second International Conference on Tropical Biology: “Ecological Restoration in Southeast Asia: Challenges, Gains, and Future Directions”. SEAMEO BIOTROP, Bogor, 12-13 OCTOBER 2015. [Indonesian].

Amianti IP, Mustika SJ, Adriyanti D, Adriana, Syahbudi A. 2019. Species composition and urban forest structure in Trenggalek Regency, East Java. Pros.Sem.Nas.Masy.Biodiv.Indon. 5(1):139-144. doi: 10.13057/psnmbi/m050126

Ardani C, Hanafi N, Pribadi T. 2013. Area prediction of green open space to complete Oxygen requirement in Palangkaraya. J. Hutan Trop. 1(1): 32-36. doi: http://dx.doi.org/10.20527/jht.v1i1.1481

Axelsson IGK. 1995. Allergy to Ficus benjamina (weeping fig) in nonatopic subjects. Allergy 50(3): 284–285. doi:10.1111/j.1398-9995. 1995.tb01149.x
Brookes A. 2007. Preventing death and serious injury from falling trees and branches. J. Outdoor Environ. Educ.11(2): 50-59.

Bucholtz GA, Hensel 3rd AE, Lockey RF, Serbousek D, Wunderlin RP. 1987. Australian pine (Casuarina equisetifolia) pollen as an aeroallergen. Ann. Allergy 59(1):52-6.

Bussotti F, Pollastrini M, Killi D, Ferrini F, Fini A. 2014. Ecophysiology of urban trees in a perspective of climate change. Agrochimica 58(3): 247-268. doi: 10.12871/0021857201431.doi: 10.12871/0021857201431.

Chambial A. 2016. Carbon sequestration potential of different multipurpose tree species. IOSR J. Agric. Vet. Sci. 9(5):11-14. doi: 10.9790/2380-0905021114.

Chen M, Xu J, Devis D, Shi J, Ren K, Searle I, Zhang D. 2016. Origin and functional prediction of pollen allergens in plants. Plant Physiol. 172(1): 341-357.

Clark KH, Nicholas KA. 2013. Introducing urban food forestry: a multifunctional approach to increase food security and provide ecosystem services. Landscape Ecol 28: 1649-1669.

Combalicer MS, Lee DK, Park YD, Bae KK. 2014. The potentials of nitrogen fixing tree species for forest restoration in the Philippines. Int. Res. J. Biol. Sci. 3(6): 73-82.

Dahlan EN, Ontaryo Y, & Umasda. 1989. Lead content in leaves of wayside trees on Jalan Sudirman, Bogor. Media Konserv. 2(4): 45-50.

Dahlan EN. 2008. The amount of CO2 gasses emission and selection of plant species with height carbon sink capability: case study in Bogor Municipality. Media Konserv. 13(2): 85-89.

Damialis A., Traidl-Hoffmann C., Treudler R. 2019. Climate Change and Pollen Allergies. In: Marselle M., Stadler J., Korn H., Irvine K., Bonn A. (eds) Biodiversity and Health in the Face of Climate Change. Springer, Cham.

e Silva JLS, de Oliveira MTP, Oliveira W, Borges LA, Cruz-Neto, O, Lopes AV. 2020. High richness of exotic trees in tropical urban green spaces: reproductive systems, fruiting and associated risks to native species. Urban For.Urban Green. 50:1-10. doi: 10.1016/j.ufug.2020.126659.

Fahruddin, F. 2020. Accumulation of heavy metal lead (Pb) and effect of stomates number on green champa leaves (Polyaltia longifolia) in industrial area of Makassar City. Int. J. Appl. Biol. 4(2): 1-8.

Fajariani W, Hendra M, Susanto D. 2020. Estimation of above ground carbon sequestration in trembesi (Albizia saman) and johar (Senna siamea) at PT Multi Harapan Utama, East Kalimantan. J. Trop. Biodivers. Biotechnol. 5(2): 115-123 doi: 10.22146/jtbb.43381.

Fitri A, Invanni I, Amal. 2020. The level of needs green open space. La Geografia 18(2):91-98.

Frank SD, Backe KM, McDaniel C, Green M, Widney S, Dunn RR. 2019. Exotic urban trees conserve similar natural enemy communities to native congeners but have fewer pests. PeerJ 7: 1-21. doi: 10.7717/peerj.653

Hall C, Knuth M. 2019. An update of the literature supporting the well-being benefits of plants: a review of the emotional and mental health benefits of plants. J. Environ. Hortic. 37 (1): 30–38.

Hassan A, Qibing C, Tao J, Bing-Yang Lv, Nian L, Li S, Tng, LY, Li JZ, Ziyue SG. 2018. Effects of plant activity on mental stress in young adults. HortScience 53(1): 104-109. doi: 10.21273/HORTSCI12447-17.

Hirokawa K. 2011. Sustainability and the urban forest: An ecosystem services perspective. Nat. Resour. J. 51(2): 233-259. doi: 10.2139/ssrn.1722650.

Husti AM, Contiu I, Radu M, Ioana N, Cantor M. 2015. Psychological benefits of ornamental plants used in office environments. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. 72(1): 101-107. doi: 10.15835/buasvmcn-hort:10625.

Indriyanto. 2006. Identification and suitability of vegetation species in Bandar Lampung City. Prosiding Seminar Hasil-hasil Penelitian dan Pengabdian kepada Masyarakat, Buku I. Lembaga Penelitian Universitas Lampung, Bandar Lampung. [Indonesian].

Jasmani Z, Ravn HP, Konijnendijk CC, van den Bosch CCK. 2016. Introducing a method for social-ecological assessment of small urban parks. Environ. Proc. J 1(2): 123-131. doi: 10.21834/e-bpj.v1i2.277.

Jithila PJ, Prasadan PK. 2018. Carbon sequestration by trees-a study in the Western Ghats, Wayanad Region. Indian J. Ecol. 45(3): 1-14.

Julianty NC, Nurzaman M, Mutaqin AZ. 2015. The relationship between leaf and particulate accumulation and lead (Pb) in the leaves of Pterocarpus indicus Willd.,
Swietenia macrophylla King., and Filicium decipiens (Wight & Arn) Thwaites in the Lansia Park area of Bandung. Biotika 13(2): 1-9. doi.: https://doi.org/10.24198/bjib.v13i2.10108

Karthikeyan A, Chandrasekaran K, Geetha M, Kalaiselvi, R. 2013. Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to frankia in nursery and field conditions. J. Biosci. 38(4), 741-747. doi: 10.1007/s12038-013-9362-3.

Kumar V. 2016. Casuarina equisetifolia L.: A potential tree. Van Sangyan 3(9): 14-17.

Kusminingrum, N. 2008. The potential of plants in absorbing CO2 and CO to reduce the impact of global warming. J. Permukiman 3(2): 96-105.

Narendra BH, Pratiwi P. 2016. Adaptability of some legume trees on quartz tailings of a former tin mining area in Bangka Island, Indonesia. J. Degrad. Min. Lands Manag. 4(1): 671–674. doi: 10.15243/jdmlm.2016.041.671.

Neto MM, da Costa JAC, Garcia-Cairasco N, Netto JC, Nakagawa B, Dantas M. 2003. Intoxication by star fruit (Averrhoa carambola) in 32 uraemic patients: treatment and outcome. Nephrol. Dial. Transplant.18(1):120-125. doi: 10.1093/ndt/18.1.120.

Ningtyas T. 2019. Utilization of public green open space (RTH) in Kediri City. J. Ilm. Manaj. Publik dan Kebijak. Sos. 3(1): 291-305. doi: 10.25139/jmnegara.v3i1.1898.

Núñez-Floreza R, Pérez-Gómez U, Fernández-Méndez F. 2019. Functional diversity criteria for selecting urban trees. Urban For. Urban Green. 38: 251-266. doi: 10.1016/j.ufug.2019.01.005.

McLain R, Melissa P, Hurley PT, Mastenbrook JL, Emery MR. 2012. Producing edible landscapes in seattle’s urban forest. Urban For. Urban Green. 11: 187-194. doi: 10.1016/j.ufug.2011.12.002.

Mukhlison. 2013. Tree species selection for urban forest development in Yogyakarta City. J. Ilmu Kehutan.7(1): 38-47.

Paulina PD, Murtedjo. 2018. Study of the Suitability of city parks' function as green open space (multisite study in three urban parks in Kediri). Swara Bhumi 5(2): 170-177.

Phua DH, Tsai WJ, Ger WJ, Deng JF, Yang CC. 2008. Human Melia azedarach poisoning. Clin. Toxicol. 46(10): 1067-1070. doi: 10.1080/15563650802310929. doi: 10.1007/s10745-013-9572-1.

Poe MR, McLain RJ, Emery M, Hurley PT. 2013. Urban Forest Justice and the Rights to Wild Foods, Medicines, and Materials in the City. Hum Ecol 41: 409–422.

Queensland Government. n.d. Frangipani (Plumeria species). (Retrieved from https://bit.ly/3eqwCPv)

Raj SRV and Prakshkumar R. 2018. Allergic evaluation of Roystonea regia (Kunth.) O. F. Cook. among Keralites, India. Ann. Plant Sci. 7(2): 2063-2066. doi: 10.21746/aps.2018.7.2.13.

Roeland S, Moretti M, Amorim JH, Branquinho C, Fares S, Morelli F, Ninemets U, Paoletti E, Pinbo P, Sgrigna G, Stojanovski V, Tiwary A, Sicard P, Calfapietra C. 2019.

Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. J. For. Res. 30(6):1981-1996. doi: 10.1007/s11676-019-00916-x.

Roy S, Byrne J, Pickering C. 2012. A systemic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 11:351-363. doi: 10.1016/j.ufug.2012.06.006.

Sæbø A, Borzan Z, Ducatillion C, Hatzistathis A, Kagerstrom T, Supuka J, Garcia-Valdecantos JL, Rego F, Slycken JV. 2005. The Selection of Plant Material for Street Trees, Park Trees and Urban Woodland. Springer, Berlin.

Schenkelberger V, Freitag M, Altmeyer P. 1998. Ficus benjamina--the hidden allergen in the house. Hautarzt 49(1):2-5. doi: 10.1007/s001050050692.

Selladurai P, Thadsanamoorthy S, Ariaranee G. 2016. Epidemic self-poisoning with seeds of Cerbera manghas in Eastern Sri Lanka: An analysis of admissions and outcome J. Clin. Toxicol. 6(2): 1-4. doi: 10.4172/2161-0495.1000287.

Selvaraj A, Jayachandran S, Thirunavukkarasu DP, Jayaraman A, Karuppan P. 2016. Carbon sequestration potential, physicochemical and microbiological properties of selected trees Mangifera indica L., Manilkara zapota L., Cocos nucifera L. and Tectona grandis L. Biosci. Discov. 2(2): 131-139.

Siringoringo HH. 2000. The ability of several types of urban trees to absorb lead particulates. Buletin Penelitian Hutan 622: 1-16

Sjöman H, Gunnarsson A, Pauleiy S, Bolhmer R. 2012. Selection approach of urban trees for inner-city environments: learning from nature. Arboric. Urban For. 38(5): 194–204.

Sjöman H, Morgenroth J, Sjöman JD, Sæbø A, Kowarik I. 2016. Diversification of the urban forest—Can we afford to exclude exotic tree species? Urban For. Urban Green. 18: 237–241. doi: 10.1016/j.ufug.2016.06.011.

Sjöman H, Hirons AD, Bassuk NL. 2018. Improving confidence in tree species selection for challenging urban sites: a role for leaf turgor loss. Urban Ecosyst. 21(6): 1171-1188. doi: 10.1007/s11252-018-0791-5.

Sulistijorini. 2009. Effectiveness and Tolerance of Greenbelt Plants to Reduce NO2 Pollutant from Transportation Activities. [Dissertation]. IPB University, Bogor. [Indonesian].

Sulistiyowati TI, Yuantika. Types of shade trees in urban park of Kediri city. J. Biol. dan Pembelajarannya 6(1): 13-17.

Suryawanshi MN, Patel AR, Kale TS, Patil, PR. 2014. Carbon sequestration potential of tree species in the environment of North Maharashtra University Campus, Jalgaon (MS) India. Biosci. Discov. 5(2): 175-179.

Syahbudin A, Meinata A, Hanindita ASH, Mulyana B. 2018. City of philosophy: evaluation of tree philosophy and its architecture in Yogyakarta philosophical axis towards UNESCO World Heritage. In: Sukartiko A, Nuringtyas T, Marliana S, Isnansetyo A (eds). Universitas Gadjah Mada, Yogykarta, 26 - 27 Oct 2017. [Indonesian].

Syahbudin A, Syaufina RL, Yudhistira R, Sadono R. 2018 November. Tree architecture models, canopy maintenance, and associated root problems of angsana (Pterocarpus indicus Willd.) in the urban trees of Yogyakarta. In IOP Conference Series: Earth and Environmental Science. IPB International Convention Center, Bogor, 21 November 2017. [Indonesian].

Turner?Skoff J, Cavender N. 2019. The benefits of trees for livable and sustainable communities. Plants, People, Planet 1: 323-335. doi: 10.1002/ppp3.39.
USDA. n.d. Poisonous Plants - Plumeria Rubra. (Retrieved from https://bit.ly/3jJyaoI).

Wang F, Xu X, Zou B, Guo Z, Li Z, Zhu W. 2013. Biomass accumulation and carbon sequestration in four different aged Casuarina equisetifolia coastal shelterbelt plantations in South China. PloS One 8(10): 2-8. doi: 10.1371/journal.pone.0077449.

Watts TJ, Li PH, Thomas I, Haque R. 2017. Occupational allergic contact dermatitis due to multiple tropical plant species. J. Allergy Clin. Immunol. Pract. 5 (1411-2): 2213-2198. doi: 10.1016/j.jaip.2017.04.026.

Werfel S, Ruëff F, Przybilla B. 2001. Anaphylaktische Reaktion durch Ficus benjamina (Birkenfeige) [Anaphylactic reaction to Ficus benjamina (weeping fig)]. Der Hautarzt 52(10):935-7. doi: 10.1007/s001050170001.

Yudha GP, Noli ZA, Idris M. 2013. The leaves growth of angsana (Pterocarpusindicus Willd) and lead (Pb) accumulation. J. Biol. Univ. Andalas 2(2): 83–89.