Assessing the susceptibility of the selected gourami (Osphronemus goramy) to Aeromonas hydrophila
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Febrianti R, Khasani I, Rosada KK. 2021. Assessing the susceptibility of the selected gourami (Osphronemus goramy) to Aeromonas hydrophila. Nusantara Bioscience 13: 111-120. A breeding program to improve the growth performance of the gourami fish was carried out through selection methods that produced faster growth gourami (selected population). The purpose of this study was to determine the susceptibility of the selected gourami to Aeromonas hydrophila infection based on tolerance limits (LD50) and investigated clinical signs post-injection of the pathogenic bacteria. The challenge test by intramuscular injection of A. hydrophila was done to the fingerling fish (15-20 g) for 14 days post-infection. The population of the tested fish was obtained from six families, selected gourami (SP), and non-selected control (CP) groups. Phosphate buffered saline (PBS) as control and several doses of the pathogen, 102, 104, 105, 106, 107, and 108 CFU/mL of A. hydrophila, were injected into the fish. Fish mortality and clinical signs were observed daily. The fish mortality was confirmed by isolating bacteria in the fish which showed clinical signs, followed by biochemical characterization of the isolated bacteria using API 20E and PCR. The LD50 of A. hydrophila to the selected population (9.70 × 105 CFU/mL) was higher than that of the control (6.50 × 104 CFU/mL). On the final day of the test, the accumulation mortality of CP (63.33±5.77%) higher than that in SP (33.33±5.77%). Based on the output test statistics, it was known that there was a significant difference between the mortality and clinical signs of SP and CP. The data suggested that the selected gourami were more resistant to A. hydrophila infection than that of the control. The A. hydrophila infection caused most of the major clinical signs, including mass mortality of the fish. The biochemical and PCR test ensure that fish mortality was caused by A. hydrophila infection.
2019-01-01
##plugins.themes.bootstrap3.article.details##
Andriani, Y., Handaka, A. A., Rosidah, & Himyati, R. 2020. Potential of Telang Plant (Clitoria ternatea) for Treatment of Aeromonas hydrophila Infection on Koi Fish (Cyprinus carpio). Revista Agrotecnologia, 11(1), 23-29. https://doi.org/10.20884/1.oa.2020.16.1.751.
Aisiah, S., Prajitno, A., Maftuch, M., & Yuniarti, A. 2020. Effect of nauclea subdita (Korth.) Steud. leaf extract on hematological and histopathological changes in liver and kidney of striped catfish infected by Aeromonas hydrophila. Veterinary World, 13(1), 47–53. https://doi.org/10.14202/vetworld.2020.47-53.
Arifin, O. Z., Imron, I., Muslim, N., Hendri, A., Aseppendi, A., & Yani, A. 2017. Phenotype and genotype characteristics of gourami, Osphronemus goramy, black galunggung strain, white galunggung, and its hybrid. Journal of Aquaculture Research, 12 (2), 99. https://doi.org/10.15578/jra.12.2.2017.99-110 [Indonesian].
Citterio, B., & Biavasco, F. 2015. Aeromonas hydrophila virulence. Virulence, 6(5), 417–418. https://doi:10.1080/21505594.2015.1058479.
Department of Marine Affairs and Fisheries, Padang Pariaman Regency. 2015. Padang Pariaman Minapolitan Master Plan 2015 - 2020. Padang Pariaman (ID): Department of Marine Affairs and Fisheries, Padang Pariaman Regency.
Dias, M. K. R., Sampaio, L. S., Proietti, A. A., Yoshioka, E. T. O., Rodrigues, D. P., Rodriguez, A. F. R., … Tavares-Dias, M. 2016. Lethal dose and clinical signs of Aeromonas hydrophila in Arapaima gigas (Arapaimidae), the giant fish from Amazon. Veterinary Microbiology, 188, 12–15. https://doi.org/10.1016/j.vetmic.2016.04.001.
Dove, M. C., & O’Connor, W. A. 2012. Reproductive cycle of Sydney rock oysters, Saccostrea glomerata (Gould 1850) selectively bred for faster growth. Aquaculture, 324-325, 218–225. https://doi:10.1016/j.aquaculture.2011.10.022.
Fernández-Bravo, A., & Figueras, M. J. 2020. An update on the genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. In Microorganisms (Vol. 8). https://doi.org/10.3390/microorganisms8010129.
Gjedrem, T., Robinson, N., & Rye, M. 2012. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350–353, 117–129. https://doi.org/10.1016/j.aquaculture.2012.04.008.
Gjedrem, T. 2015. Disease resistant fish and shellfish are within reach: A review. Journal of Marine Science and Engineering, 3, 146–153. https: https://doi.org/10.3390/jmse3010146.
GPS (Global Positioning Systems) Coordinate. 2017. Google Play Store.www.google.com/gps...Accessed January 2020.
Hardi, E. H., Kusuma, I. W., Suwinarti, W., Saptiani, G., Sumoharjo, S., & Lusiastuti, A. M. 2017. Utilization of several herbal plant extracts on Nile tilapia in preventing Aeromonas hydrophila and Pseudomonas sp. bacterial infection. Nusantara Bioscience, 9(2), 220–228. https://doi.org/10.13057/nusbiosci/n090219.
Hardi, E. H., Nugroho, R. A., Saptiani, G., Sarinah, R. I. A., Agriandini, M., & Mawardi, M. 2018. Identification of potentially pathogenic bacteria from tilapia (Oreochromis niloticus) and channel catfish (Clarias batrachus) culture in Samarinda, East Kalimantan , Indonesia. 19(2), 480–488. https://doi.org/10.13057/biodiv/d190215.
Haryani, A. Roffi, G. Ibnu D B., Ayi, S. 2012. Effectiveness test of Papaya leafs (Carica papaya) for Treatment of Aeromonas hydrophila bacterial Infection in Chef Carp (Carassius auratus). Journal of Fisheries and Marine Affairs, 3(3): 213-220.
Hendry, A. P., Kinnison, M. T., Heino, M., Day, T., Smith, T. B., Fitt, G., … Carroll, S. P. 2011. Evolutionary principles and their practical application. Evolutionary Applications, 4(2), 159–183. https://doi:10.1111/j.1752-4571.2010.00165.x.
Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., Strugnell, J. M. 2019. Review The Future of Aquatic Protein?: Implications for Protein Sources in Aquaculture Diets. One Earth, 1(3), 316–329. https://doi.org/10.1016/j.oneear.2019.10.018.
Hussain, I. A., Jeyasekaran, G., Shakila, R. J., Raj, K. T., & Jeevithan, E. 2014. Detection of hemolytic strains of Aeromonas hydrophila and A. Sobria along with other Aeromonas spp. from fish and fishery products by multiplex PCR. Journal of Food Science and Technology, 51(2), 401–407. https://doi.org/10.1007/s13197-013-1190-9.
Huang, Y. C., Yin, Z., Weng, S., He, J., & Li, S. 2012. Selective breeding and preliminary commercial performance of Penaeus vannamei for resistance to white spot syndrome virus (WSSV). Aquaculture, 364–365, 111–117. https://doi.org/10.1016/j.aquaculture.2012.08.002.
Khasani, I., Lusiastuti, A. M., Zairin, M., & Alimuddin, A. 2017. Resistance to vibriosis, production performance and tolerance to stress of the selected giant freshwater prawn (Macrobrachium rosenbergii). Aquaculture Research, 49(1), 273–281. https://doi.org/10.1111/are.13458.
Krishna, G., Gopikrishna, G., Gopal, C., Jahageerdar, S., Ravichandran, P., Kannappan, S., Hayes, B. 2011. Genetic parameters for growth and survival in Penaeus monodon cultured in India. Aquaculture, 318, 74–78. https://doi.org/10.1016/j.aquaculture.2011.04.028.
Khumaidi, A and Hidayat A. 2018. Identification of Causes of Mass Death Of Gurami Fish (Osphronemus gouramy) In Gurami Fish Cultivation Sentra, Desa Beji, Kedung Banteng District, Banyumas District, Central Java. Journal of Aquaculture Science October, 2018 (2), 145–153.
Kusdarwanti, R., Kismiyati, Sudarno, Kurniawan, H., & Prayogi, Y. T. 2017. Isolation and Identification of Aeromonas hydrophila and Saprolegnia sp . on Catfish ( Clarias gariepinus ) in Floating cages in Bozem Moro Krembangan Surabaya. IOP Conference Series: Earth and Environmental Science, 55(1). https://doi.org/ 10.1088/1755-1315/55/1/012038.
Kusdarwati, R., Rozi, D Dinda, N., & Nurjanah, I. 2018. Antimicrobial resistance prevalence of Aeromonas hydrophila isolates from motile Aeromonas septicemia disease. IOP Conference Series: Earth and Environmental Science, 137(1). https://doi.org/10.1088/1755-1315/137/1/012076.
Kusumawaty, D., Pancoro, A., & Suhandono, S. 2016. Evaluation of identification techniques for the fish pathogen, Aeromonas hydrophila, from Indonesia. Malaysian Journal of Microbiology. 12(3), 191–198. http://dx.doi.org/10.21161/mjm.77915.
Leitão, J. H. 2020. Microbial virulence factors. International Journal of Molecular Sciences, 21(15), 1–6. https://doi.org/10.3390/ijms21155320.
Li T., Li H., Gatesoupe F. J., She R., Lin Q., Yan X., Li J., Li X., 2017 Bacterial signatures of “Red-Operculum” disease in the gut of crucian carp (Carassius auratus). Microbiology of Aquatic System 74:510–521. https://doi.org/10.1007/s00248-017-0967-1.
Lionel, D., Max, N., & Elise, M. 2015. Mass selection for survival and resistance to OsHV-1 infection in Crassostrea gigas spat in field con- ditions: Response to selection after four generations. Aquaculture, 446, 111–121. https://doi.org/10.1016/j.aquaculture.2015.04.029.
Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. 2019. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms, 7(11), 569. https://doi:10.3390/microorganisms7110569.
Mangunwardoyo, W., Ismayasari, R., & Riani, E. 2016. Pathogenicity and virulence test of Aeromonas hydrophila Stanier on Tilapia (Oreochromis niloticus Lin.) through postulate koch. Journal of Aquaculture Research, 5 (2), 145. https://doi.org/10.15578/jra.5.2.2010.145-255.
Marine and Fisheries Ministry. 2018. Gouramy cultivation, activator regional economy and improve welfare. [Online] available at http: // www. djpb. kkp.go.id [accessed October 25, 2019].
Makrinos D. L., Bowden T. J., 2016 Natural environmental impacts on teleost immune function. Fish and Shellfish Immunology 53:50-57. https://doi.org/10.1016/j.fsi.2016.03.008
Maryadi, H., 2011. Study of the Development of Clinical Symptoms and Pathology in Tiger Grouper (Epinephelus fuscoguttatus) Infected with Streptococcus iniae. Thesis, Faculty of Fisheries and Marine Sciences. Bogor :, Bogor Agricultural University. 99 p. . [Indonesian].
Moss SM, Moss DR, Arce SM, Lightner DV, Lotz JM. 2012. Therole of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. Journal of Invertebrate Pathology110: 247–250. https://doi.org/10.1016/j.jip.2012.01.013.
Nugroho, E., Nafiqoh, N., & Gustiano, R. 2012. Productivity of several varieties of gourami (Osphronemus gourami). Proceedings of the Aquaculture Technology Innovation Forum, p. 1095–1101.
Olga. 2014. Pathogenicity of Aeromonas hydrophila ASB01 bacteria in snakehead fish (Ophicephalus striatus) (The Pathogenicity of Aeromonas hydrophila ASB01 on Snakehead (Ophicephalus striatus) 14 (1), 33–39.
Oliveira, S. R. de, Souza, R. T. Y. B. de, Brasil, E. M., Andrade, J. I. A. de, Nunes, É. da S. S., Ono, E. A., & Affonso, E. G. 2011. LD5o of the bacteria Aeromonas hydrophila to matrinxã, Brycon amazonicus. Acta Amazonica, 41(2), 321–326. https://doi:10.1590/s0044-59672011000200019.
Öztürk, R. Ç., & Altinok, I. 2014. Bacterial and viral fish diseases in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 14(1), 275–297. https://doi.org/10.4194/1303-2712-v14_1_30.
Parker LM, Ross PM, O’Connor WA. 2011. Populations of the Sydney rock oyster,Saccostrea glomerata, vary in response to ocean acidification. Mar Biol.;158(3):689–97. https://doi.org/10.1007/s00227-010-1592-4.
Purwaningsih U, Indrawati A, Lusiastuti AM. 2014. Protection of monovalent vaccines and whole cocktails against co-infection of Mycobacterium fortuitum and Aeromonas hydrophila in gourami, Osphronemus gourami. Journal of Aquaculture Research, 9 (2): 283-294. https://doi.org/10.15578/jra.9.2.2014.283-294.
Rao, K., & Benarjee, P. G. 2016. Haematological changes in South Indian fresh water murrel , Channa punctatus have both EUS and A. hydrophila infection. Journal of Parasitic Diseases. https://doi.org/10.1007/s12639-016-0798-x.
Republic of Indonesia., 2017. Government Regulation No. 32 concerning Fish Farming, President of the Republic of Indonesia. Jakarta: Minister of the Environment. 67 p.
Reid, G. K., Gurney-smith, H. J., Marcogliese, D. J., Chopin, T., Brewer-dalton, K., Moccia, R. D., & Flaherty, M. 2019. Climate change and aquaculture?: considering biological response and resources. (November). https://doi.org/10.3354/aei00332.
Rozi, R., Rahayu, K., Daruti, D. N., &, M S P Stella, M. S. P. 2018. Study on characterization , pathogenicity and histopathology of disease caused by Aeromonas hydrophila in gourami (Osphronemus gourami) (April). https://doi.org/10.1088/1755-1315/137/1/012003.
Subhan, U., Mauladani, S., Rosidah, Suryadi, I. B. B., & Joni, I. M. 2020. Promising application of fine bubbles (FBs) to control Aeromonas hydrophila on striped catfish seed (Pangasianodon hypophthalmus). 3rd International Conference on Condensed Matter and applied physics (ICC-2019). https://doi:10.1063/5.0003059.
Suebsong, W., Poompuang, S., Srisapoome, P., Koonawootrittriron, S., Luengnaruemitchai, A., Johansen, H., & Rye, M. 2019. Selection response for Streptococcus agalactiae resistance in Nile tilapia Oreochromis niloticus. Journal of Fish Diseases, 42(11), 1553–1562. https://doi.org/10.1111/jfd.13074.
Sularto, Febrianti R, Suharyanto, 2016. Heritability Estimation and Selection Response of Goramy Crosses (Osphronemus goramy Lac.). J. Aquaculture Research, 11 (1): 23-28. https://doi.org/10.15578/jra.11.1.2016.23-28.
Sularto, Febrianti R, Listiyowati R. 2020. Research and Development of Superior Strain Gourami in Society. Fish Breeding Research Institute. Research Activity Technical Report 2020.
Suprapto, S., & Kairudin, N. M. 2017. Genetic variation, heritability, genetic action and genetic progress of soybean (Glycine max Merrill) on ultisol. Indonesian Journal of Agricultural Sciences, 9 (2), 183–190. https://doi.org/10.31186/jipi.9.2.183-190.
Taukhid, Gardenia, L, Andriyanto, S, 2016. The efficacy of the "trivalent" combination vaccine (Aeromonas hydrophila, Streptococcus agalactiae, and Mycobacterium fortuitum) for the prevention of potential bacterial diseases in freshwater fish culture. J. Aquaculture Research, 11 (4): 373-385. https://doi.org/10.15578/jra.11.4.2016.373-385.
Trang, T. T., Hung, N. H., Ninh, N. H., Knibb, W., & Nguyen, N. H. 2019. Genetic variation in disease resistance against white spot syndrome virus (WSSV) in liptopenaeus vannamei. Frontiers in Genetics, 10(MAR), 1–10. https://doi.org/10.3389/fgene.2019.00264.
Tripathi, G. S., Tripathi, G., & Singh, P. 2018. Assessment of different water quality parameters under bottle aquaponic system and normal controlled conditions with Trichopodus trichopterus (Blue gourami) Assessment of different water quality parameters under bottle aquaponic system and normal controlled condi. (December), 0–5.
Ulfiana, R., Mahasri, G., and Suprapto, S. 2012. Occurrence Rate of Aeromonasis in Koi Fish (Cyprinus carpio) Infected by Myxobolus koi At Different Degrees of Infection. Scientific Journal of Fisheries and Marine Sciences, 4(2): 169-174. https://doi.org/10.20473/jipk.v4i2.11568.
Wulandari, A., Prayitno, S. B., & Sarjito. 2014. Pathogenicity of K14 isolate isolated from African catfish (Clarias gariepinus) originating from Demak. Journal of Aquaculture Management and Technology, 3 (2) (3), 143–149. Retrieved from http://ejournal-s1.undip.ac.id/index.php/jfpik.
Yamazaki, K., Kashimoto, T., Niwano, A., Yamasaki, M., Nomura, M., Akeda, Y., & Ueno, S. 2021. Expansion of necrosis depending on hybrid motor-driven motility of aeromonas hydrophila in a murine wound infection model. Microorganisms, 9(1), 1–12. https://doi.org/10.3390/microorganisms9010010.
Yan~ez, J. M., Lhorente, J. P., Bassini, L. N., Oyarzu n, M., Neira, R., & Newman, S. 2014. Genetic covariation between resistance against both Caligus rogercresseyi and Piscirickettsia salmonis, and body weight in Atlantic salmon, Salmo salar. Aquaculture, 433,295–298. https://doi.org/10.1016/j.aquaculture.2014.06.026.
Yengkhom O., Shalini K. S., Subramani P. A., Michael R. D., 2019 Stimulation of nonspecific immunity, gene expression, and disease resistance in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758), by the methanolic extract of the marine macroalga, Caulerpa scalpelliformis. Veterinary World 12:271-276. https://doi.org/10.14202/vetworld.2019.271-276.
Zubaidah, A., Samsundari, S., & Hidayaturrahmi, H. 2019. Effectiveness of strychnine bush extract (Strychnos ligustrina blume) against to prevalence and survival rate of Dumbo catfish (Clarias gariepinus) infected with Aeromonas hydrophila. Indonesian Journal of Tropical Aquatic, 2(1), 1. https://doi.org/10.22219/ijota.v2i1.5601.