Plant-extract-mediated biosynthesis of silver nanoparticles using Eleutherine americana bulb extract and its characterization

##plugins.themes.bootstrap3.article.main##

JULINDA ROMAULI MANULLANG
RUDY AGUNG NUGROHO
MIFTAKHUR ROHMAH
RUDIANTO
AMANDA QORYSUCHI

Abstract

Abstract. Manullang JR, Nugroho RA, Rohmah M, Rudianto, Qorysuchi A. 2021. Plant-extract-mediated biosynthesis of silver nanoparticles using Eleutherine americana bulb extract and its characterization. Nusantara Bioscience 13: 247-254. The plant-based biosynthesis of nanoparticles has gained increasing momentum due to being lower in cost and eco-friendly. This study aimed to biosynthesize nanoparticles from the ethanolic bulb extract of Eleutherine americana (Aubl.) Merr. Ex K.Heyne (Ea-AgNPs), then characterize Ea-AgNPs and determine their phytochemical content and antioxidant capacity. The Ea-AgNPs were synthesized using ethanolic extract of E. americana bulb along with various concentrations of AgNO3 (0.5-4 mM). The Ea-AgNPs were then characterized using UV-VIS spectroscopic, Scanning Electron Microscopy/ Energy Dispersive X-ray (SEM/EDX), Transmission Electron Microscopy (TEM), X-ray Powder Diffractometry (XRD), and Fourier-Transform Infrared Spectroscopy (FTIR) techniques. The results indicated that E. americana could be used to reduce AgNO3 to synthesize Ea-AgNPs, indicated by color change, and had optimum UV/VIS spectra at 400 nm. The FTIR analysis found that Ea-AgNPs showed peaks at 2919, 2850, 1586, and 1031 cm1, containing several important bio compounds. Additionally, the XRD results found an amorphous Ea-AgNP peak with maximum intensity and proportion of silver occurring at 24 Theta. The particle size distribution curve of Ea-AgNPs showed a size of 105 nm. Furthermore, SEM/EDX analysis revealed an optical absorption characteristic peak at 3 keV. The EDX examination revealed three signals: a strong signal from the C atom (70.99 %), an O atom (28.95 %), and an Ag atom (0.06 %). The TEM imaging also showed the characteristics of Ea-AgNPs. Some phytochemicals such as flavonoids, tannins, alkaloids, and saponins were found in Ea-AgNPs, with IC50 values of 45.30 ppm.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Adebayo-Tayo, B., Salaam, A., & Ajibade, A. (2019). Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon, 5(10), e02502.
Anake, W. U., Ana, G. R., & Benson, N. U. (2016). Study of surface morphology, elemental composition and sources of airborne fine particulate matter in Agbara industrial estate, Nigeria. International Journal of Applied Environmental Sciences, 11(4), 881-890.
Crisan, C. M., Mocan, T., Manolea, M., Lasca, L. I., T?b?ran, F.-A., & Mocan, L. (2021). Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 11(3), 1120.
Fatimah, I., & Aftrid, Z. H. V. I. (2019). Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus Tricolor L.) leaf extract. Green Chemistry Letters and Reviews, 12(1), 25-30.
Goswami, P., & Mathur, J. (2019). Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Science Today, 6(2), 232-242.
Gottardo, S., Mech, A., Drbohlavova, J., Malyska, A., Bøwadt, S., Sintes, J. R., & Rauscher, H. (2021). Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact, 100297.
Guo, K. W. (2012). Green nanotechnology of trends in future energy: a review. International journal of energy research, 36(1), 1-17.
Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N., Ritchard, N. T., Hartzfeld, P. W., & Riechel, T. L. (1998). High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of agricultural and food chemistry, 46(5), 1887-1892.
Ider, M., Abderrafi, K., Eddahbi, A., Ouaskit, S., & Kassiba, A. (2017). Silver metallic nanoparticles with surface plasmon resonance: Synthesis and characterizations. Journal of Cluster Science, 28(3), 1051-1069.
Ifesan, B. O., Hamtasin, C., Mahabusarakam, W., & Voravuthikunchai, S. P. (2009). Assessment of antistaphylococcal activity of partially purified fractions and pure compounds from Eleutherine americana. Journal of food protection, 72(2), 354-359.
Insanu, M., Kusmardiyani, S., & Hartati, R. (2014). Recent Studies on Phytochemicals and Pharmacological Effects of Eleutherine americana Merr. Procedia Chemistry, 13, 221-228.
Iravani, S., & Varma, R. S. (2020). Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environmental chemistry letters, 18(3), 703-727.
Jalilian, F., Chahardoli, A., Sadrjavadi, K., Fattahi, A., & Shokoohinia, Y. (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 31(3), 1323-1332.
Kaabipour, S., & Hemmati, S. (2021). A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology, 12(1), 102-136.
Kamarudin, A. A., Sayuti, N. H., Saad, N., Razak, N. A. A., & Esa, N. M. (2021). Eleutherine bulbosa (Mill.) Urb. Bulb: Review of the pharmacological activities and its prospects for application. International journal of molecular sciences, 22(13), 6747.
Kedi, P. B. E., Meva, F. E. a., Kotsedi, L., Nguemfo, E. L., Zangueu, C. B., Ntoumba, A. A., Mohamed, H. E. A., Dongmo, A. B., & Maaza, M. (2018). Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. International Journal of Nanomedicine, 13, 8537.
Kumar, P., Senthamil Selvi, S., Lakshmi Prabha, A., Prem Kumar, K., Ganeshkumar, R., & Govindaraju, M. (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomed Eng, 4(1), 12-16.
Kuntorini, E. M., Dewi, M., & Misrina, M. (2016). Anatomical structure and antioxidant activity of red bulb plant. Biodiversitas Journal of Biological Diversity, 17(1).
Lateef, A., Ojo, S. A., Akinwale, A. S., Azeez, L., Gueguim-Kana, E. B., & Beukes, L. S. (2015). Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia, 70(10), 1295-1306.
Mahabusarakam, W., Hemtasin, C., Chakthong, S., Voravuthikunchai, S. P., & Olawumi, I. B. (2010). Naphthoquinones, anthraquinones and naphthalene derivatives from the bulbs of Eleutherine americana. Planta medica, 76(04), 345-349.
Mustafa, R. A., Abdul Hamid, A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J Food Sci, 75(1), C28-35. https://doi.org/10.1111/j.1750-3841.2009.01401.x
Nahar, K. N., Rahaman, M., Khan, G., Islam, M., & Al-Reza, S. M. (2021). Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential. Asian Journal of Green Chemistry, 5(1), 135-150.
Nugroho, R. A., Hindryawati, N., Aryani, R., Manurung, H., Sari, Y. P., Nurti, D. D., Rudianto, R., Prahastika, W., & Zahida, F. (2021). Biosynthesis of silver nanoparticles from aqueous extract of Myrmecodia pendans bulb. AIP Conference Proceedings,
Nuryanto, M. K., & Paramita, S. (2018). Anti-inflammatory activity of bawang Dayak (Eleutherine bulbosa (Mill. Urb.)) ethanol bulb extracts.
Oda, A. M., Abdulkadhim, H., Jabuk, S. I., Hashim, R., Fadhil, I., Alaa, D., & Kareem, A. (2019). Green synthesis of silver nanoparticle by cauliflower extract: characterisation and antibacterial activity against storage. IET Nanobiotechnology, 13(5), 530-535.
Pandian, A. M. K., Karthikeyan, C., Rajasimman, M., & Dinesh, M. G. (2015). Synthesis of silver nanoparticle and its application. Ecotoxicology and Environmental Safety, 121, 211-217. https://doi.org/https://doi.org/10.1016/j.ecoenv.2015.03.039
Panneerselvam, C., Ponarulselvam, S., & Murugan, K. (2011). Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res, 3(6), 208-217.
Phoem, A. N., Mayiding, A., Saedeh, F., & Permpoonpattana, P. (2019). Evaluation of Lactobacillus plantarum encapsulated with Eleutherine americana oligosaccharide extract as food additive in yoghurt. Brazilian Journal of Microbiology, 50(1), 237-246.
Prathna, T., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces, 82(1), 152-159.
Rai, N., Shukla, T. P., Loksh, K. R., & Karole, S. (2020). Synthesized Silver Nanoparticle Loaded Gel of Curcuma Caesia for Effective Treatment of Acne. Journal of Drug Delivery and Therapeutics, 10(6-s), 75-82.
Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 100428.
Saragih, B., Pasiakan, M., & Wahyudi, D. (2014). Effect of herbal drink plants Tiwai (Eleutherine Americana Merr) on lipid profile of hypercholesterolemia patients. International Food Research Journal, 21(3).
Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and molecular pathology, 86(3), 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004
Song, S.-H., Min, H.-Y., Han, A.-R., Nam, J.-W., Seo, E.-K., Park, S. W., Lee, S. H., & Lee, S. K. (2009). Suppression of inducible nitric oxide synthase by (?)-isoeleutherin from the bulbs of Eleutherine americana through the regulation of NF-?B activity. International immunopharmacology, 9(3), 298-302.
Umadevi, M., Shalini, S., & Bindhu, M. (2012). Synthesis of silver nanoparticle using D. carota extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(2), 025008.
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778.
Uzair, B., Liaqat, A., Iqbal, H., Menaa, B., Razzaq, A., Thiripuranathar, G., Fatima Rana, N., & Menaa, F. (2020). Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering, 7(4), 129.
Velsankar, K., RM, A. K., Preethi, R., Muthulakshmi, V., & Sudhahar, S. (2020). Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. Journal of Environmental Chemical Engineering, 8(5), 104123.
Vijayakumar, S., Malaikozhundan, B., Saravanakumar, K., Durán-Lara, E. F., Wang, M.-H., & Vaseeharan, B. (2019). Garlic clove extract assisted silver nanoparticle–Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. Journal of Photochemistry and Photobiology B: Biology, 198, 111558.
Zhang, P., Guo, Z., Ullah, S., Melagraki, G., Afantitis, A., & Lynch, I. (2021). Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants, 7(7), 864-876.