Photo-physiology of healthy-looking and diseased/health-compromised hard corals from Mauritius Island, Western Indian Ocean

##plugins.themes.bootstrap3.article.main##

SHAKEEL YAVAN JOGEE
SRUTI JEETUN
MELANIE RICOT
NAWSHEEN TALEB-HOSSENKHAN
SUSHMA MATTAN-MOORGAWA
DEEPEEKA KAULLYSING
PAULINE RIEMANN
LEA BLANC
BEATRIZ ESTELA CASARETO
YOSHIMI SUZUKI
RANJEET BHAGOOLI

Abstract

Abstract. Jogee SY, Jeetun S, Ricot M, Taleb-Hossenkhan N, Mattan-Moorgawa S, Kaullysing D, Riemann P, Blanc L, Casareto BE, Suzuki Y, Bhagooli R. 2023. Photo-physiology of healthy-looking and diseased/health-compromised hard corals from Mauritius Island, Western Indian Ocean. Indo Pac J Ocean Life 7: 27-37. The spatial photo-physiological responses of in hospite zooxanthellae in hard corals, including coenosarc and polyps, healthy-looking and affected parts in four coral diseases, namely Brown Band, Black Band, Skeletal Eroding Band and White Band on the coral Acropora muricata, and two health-compromised conditions such as the Pink Pigmentation Response and its differentiated morphology, the Pink Line Syndrome, on the coral Porites were investigated using the Imaging-PAM fluorometry. A significantly lower Fv/Fm was observed in case of Black Band, White Band, Brown Band and Pink Pigmentation Response affected parts compared to the healthy-looking parts. The Fv/Fm had the highest decline in Brown Band disease. Both the polyps and coenosarc had significantly lower Fv/Fm in White Band and Brown Band diseased parts compared to their healthy-looking parts. The rETRmax did not change significantly between diseased/health-comprised parts and healthy-looking parts. NPQmax declined significantly in White Band, Black Band and Pink Pigmentation Response cases. ? and ? generally did not tend to be affected in diseased/health-compromised conditions. The photo-physiology of in hospite zooxanthellae was least affected in Pink Line Syndrome. These findings suggest that diseased/health-compromised parts of corals behave differently in terms of their photo-physiology in different diseased and health-compromised coral conditions in important reef-building corals species such as A. muricata and Porites species, with important implications for the productivity and thus adaptive management of coral reefs in a globally warming ocean.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Anthony KR, Hoegh-Guldberg O. 2003. Kinetics of photoacclimation in corals. Oecologia 134: 23-31. DOI: 10.1007/s00442-002-1095-1.
Barneah O, Ben?Dov E, Kramarsky?Winter E, Kushmaro A. 2007. Characterization of black band disease in Red Sea stony corals. Environ Microbiol 9 (8): 1995-2006. DOI: 10.1111/j.1462-2920.2007.01315.x.
Beeden R, Willis BL, Raymundo LJ, Page CA, Weil E. 2008. Underwater Cards for Assessing Coral Health on Indo-Pacific Reefs. Coral Reef Targeted Research and Capacity Building for Management. Currie Communications, Melbourne.
Bhagooli R, Jogee SY, Kaullysing D, Ramah S. 2021a. First report of White Syndrome Disease on branching Acropora at Saya de Malha, Mascarene Plateau, Western Indian Ocean. SI – Studies on the Mascarene Plateau. West Indian Ocean J Mar Sci 1/2021: 189-192. DOI: 10.4314/wiojms.si2021.2.15.
Bhagooli R, Kaullysing D. 2019. Seas of Mauritius. World Seas: An Environmental Evaluation 253-277. DOI: 10.1016/b978-0-08-100853-9.00016-6.
Bhagooli R, Klaus R. 2014. Mauritius. In: Klaus R (Eds). Coral Reef Atlas and Outlook-South Western Indian Ocean Islands. Report to the Indian Ocean Commission. ISLANDS Project. Mauritius.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Chumun PK, Klaus R, Munbodhe V. 2021b. Status and sustainability of reefs and shorelines of the Republic of Mauritius. In: Gunputh RP (Eds). Sustainable Development Goals. Chapter 8. Star Publications Pvt. Ltd., New Delhi, India.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, Soondur M, Pilly SS, Beesoo R, Wijayawanti DP, Bachok ZB, Monrás VC, Casareto BE, Suzuki Y, Baker AC. 2021c. Chlorophyll fluorescence - a tool to assess photosynthetic performance and stress photo-physiology in symbiotic marine invertebrates and seaplants. Mar Pollut Bull 165: 112059. DOI: 10.1016/j.marpolbul.2021.112059.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Taleb-Hossenkhan N. 2017. A first field report of coral diseases around Mauritius Island, Western Indian Ocean. West Indian Ocean J Mar Sci Special Issue 1/ 2017: 55-56.
Bourne DG, Boyet, HV Henderson, ME, Muirhead A, Willis BL. 2008. Identification of a ciliate (Oligohymenophorea: Scuticociliatia) associated with brown band disease on corals of the Great Barrier Reef. Appl Environ Microbiol 74 (3): 883-888. DOI: 10.1128/AEM.01124-07.
Boyett HV. 2006. The Ecology and Microbiology of Black Band Disease and Brown Band Syndrome on the Great Barrier Reef. [Doctoral Dissertation]. James Cook University. [Australian]
Brown BE, Le Tissier MDA, Dunne RP. 1994. Tissue retraction in the scleractinian coral Coeloseris mayeri, its effect upon coral pigmentation, and preliminary implications for heat balance. Mar Ecol Prog Ser 105: 209-209. DOI: 10.3354/meps105209.
Burns JHR, Gregg TM, Takabayashi M. 2013. Does coral disease affect Symbiodinium? Investigating the impacts of growth anomaly on symbiont photophysiology. PLoS ONE 8 (8): 72466. DOI: 10.1371/journal.pone.0072466.
Cróquer A, Bastidas C, Lipscomb D. 2006. Folliculinid ciliates: A new threat to Caribbean corals? Dis Aquat Org 69 (1): 75-78. DOI: 10.3354/dao069075.
D’Angelo C, Smith EG, Oswald F, Burt J, Tchernov D, Wiedenmann J. 2012. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31 (4): 1045-1056. DOI: 10.1007/s00338-012-0926-8.
Douglas AE. 2009. The productivity of corals. In: Nihoul JCJ, Chen CTA (Eds). Oceanography. Encyclopedia of Life Support Systems, Oxford, UK.
Edmunds PJ. 1991. Extent and effect of black band disease on a Caribbean reef. Coral Reefs 10 (3): 161-165. DOI: 10.1007/BF00572175.
Enríquez S, Méndez ER, Prieto RI. 2005. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50 (4): 1025-1032. DOI: 10.4319/lo.2005.50.4.1025.
Harvell D, Jordán-Dahlgren E, Merkel S, Rosenberg E, Raymundo L, Smith G, Weil E, Willis B. 2007. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20: 172-195. DOI: 10.5670/oceanog.2007.91.
Hill R, Schreiber U, Gademann R, Larkum AWD, Kühl M, Ralph PJ. 2004. Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar Biol 144 (4): 633-640. DOI: 10.1007/s00227-003-1226-1.
Kline DI, Vollmer SV. 2011. White band disease (type I) of endangered Caribbean acroporid corals is caused by pathogenic bacteria. Sci Rep (1): 1-5. DOI: 10.1038/srep00007.
Kuta KG, Richardson LL. 1996. Abundance and distribution of Black Band Disease on coral reefs in the northern Florida Keys. Coral Reefs 15 (4): 219-223. DOI: 10.1007/BF01787455.
Lobban CS, Raymundo LM, Montagnes DJ 2011. Porpostoma guamensis n. sp., a Philasterine Scuticociliate associated with Brown?Band Disease of corals. J Eukaryot Microbiol 58 (2): 103-113. DOI: 10.1111/j.1550-7408.2010.00526.x.
Mattan-Moorgawa S, Kaullysing D, Hossenkhan NT, Rughooputh SD, Bhagooli R. 2017. Photophysiology of in hospite zooxanthellae in diseased and non-diseased scleractinian corals from Belle Mare, Mauritius. West Indian Ocean J Mar Sci WIOJMS Special Issue 1/2017: 1-12. DOI: 10.13057/oceanlife/o020101.
Miller JD, Hoffman BJ, Gaughan ET, Gentile B, Maples J, Campbell WK. 2011. Grandiose and Vulnerable Narcissism: A nomological network analysis. J Personal 79 (5): 1013-1042. DOI: 10.1111/j.1467-6494.2010.00711.x.
Muscatine L, Falkowski PG, Porter JW, Dubinsky Z. 1984. Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc B: Biol Sci 222 (1227): 181-202. DOI: 10.1098/rspb.1984.0058.
Page CA, Willis BL. 2008. Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 27 (2): 257-272. DOI: 10.1007/s00338-007-0317-8.
Platt TGCL, Gallegos CL, Harrison WG. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38 (4): 687-701.
Ralph P, Gademann R, Larkum A, Kühl M. 2002. Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol 141 (4): 639-646. DOI: 10.1007/s00227-002-0866-x.
Ramessur R. 2002. Anthropogenic-driven changes with focus on the coastal zone of Mauritius, South-Western Indian Ocean. Reg Environ Change 3 (1): 99-106. DOI: 10.1007/s10113-002-0045-0.
Ramessur RT, Boodhoo K, Balgobin J, Povinec P, Burnett WC. 2011. Dissolved nutrients from submarine groundwater in Flic en Flac lagoon, Mauritius. West Indian Ocean J Mar Sci WIOJMS 10 (2): 121-127.
Ravindran J, Raghukumar C. 2002. Pink line syndrome (PLS) in the scleractinian coral Porites lutea. Coral Reefs 21: 252. DOI: 10.1007/s00338-002-0247-4.
Richardson LL, Kuta KG. 2003. Ecological physiology of the black band disease Cyanobacterium Phormidium corallyticum. FEMS Microbiol Ecol 43 (3): 287-298. DOI: 10.1016/s0168-6496(03)00025-4.
Ritchie KB, Smith GW. 1998. Type II white-band disease. Rev Biol Trop 46 (5): 199-203.
Roff G, Ulstrup, KE, Fine M, Ralph PJ, Hoegh?Guldberg O. 2008. Spatial heterogeneity of photosynthetic activity within diseased corals from the Great Barrier Reef. J Phycol 44 (2): 526-538. DOI: 10.1111/j.1529-8817.2008.00480.x.
Rosenberg E, Ben?Haim Y. 2002. Microbial diseases of corals and global warming. Environ Microbiol 4 (6): 318-326. DOI: 10.1046/j.1462-2920.2002.00302.x.
Sadally SB, Taleb-Hossenkhan N, Bhagooli R. 2014. Spatio-temporal variation in density of microphytoplankton genera in two tropical coral reefs of Mauritius. Afr J Mar Sci 36 (4): 423-438. DOI: 10.2989/1814232X.2014.973445.
Seveso D, Montano S, Reggente MAL, Orlandi I, Galli P, Vai M. 2015. Modulation of Hsp60 in response to coral brown band disease. Dis Aquat Org 115 (1): 15-23. DOI: 10.3354/dao02871.
Silva-Lima AW, Froes AM, Garcia GA, Tonon LAC, Swings J, Cosenza CAN, Medina M, Penn K, Thompson JR, Thompson CC, Thompson FL. 2021. Mussismilia braziliensis white plague disease is characterized by an affected coral immune system and dysbiosis. Microb Ecol 81 (3): 795-806. DOI: 10.1007/s00248-020-01588-5.
Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, Medina M. 2009. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3 (5): 512-521. DOI: 10.1038/ismej.2008.131.
Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG. 2009. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS ONE 4 (2): 4511. DOI: 10.1371/journal.pone.0004511.
Thangaradjou T, Machendiranathan M, Ranith R, Senthilnathan L, Sasamal SK, Choudhury SB. 2016. Coral disease prevalence in Gulf of Mannar and Lakshadweep Islands. Indian J Geo-Mar Sci 45 (12): 1755-1762.
Ulstrup KE, Ku?hl M, Bourne DG. 2007. Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. Appl Environ Microbiol 73 (6): 1968-1975. DOI: 10.1128/AEM.02292-06.
Work T, Aeby G. 2006. Systematically describing gross lesions in corals. Dis Aquat Org 70: 155-160. DOI: 10.3354/dao070155.
Yucharoen M. 2016. Pink Pigmentation Response during Recovery Period after Coral Bleaching. [Doctoral Dissertation]. Shizuoka University. [Japan].
Zakaria, IJ, Wulandari A, Febria FA. 2021. Diseases and health disturbances on scleractinian corals in the West Sumatra Sea, Indian Ocean. Aquac Aquar Conserv Legis 14 (1): 462-477.