Thermal photo-physiological responses of massive heat-resistant coral Porites lutea under fish predated versus non-predated conditions

##plugins.themes.bootstrap3.article.main##

MELANIE RICOT
SRUTI JEETUN
SHAKEEL JOGGEE
DEEPEEKA KAULLYSING
NAWSHEEN TALEB-HOSSENKHAN
RANJEET BHAGOOLI

Abstract

Abstract. Ricot M, Jeetun S, Joggee S, Kaullysing D, Taleb-Hossenkhan N, Bhagooli R. 2023. Thermal photo-physiological responses of massive heat-resistant coral Porites lutea under fish predated versus non-predated conditions. Indo Pac J Ocean Life 7: 38-47. Fish predation on corals leading to polyp and tissue loss has been identified as a significant stressor to corals and is often associated with reduced growth, reproduction, and even mortality. However, how climate change-driven ocean warming may impact such a biological stressor is yet to be thoroughly understood. This study aimed to assess elevated temperature’s effects on the photo-physiology of fish-predated and non-predated parts of the thermally resistant coral Porites lutea (Quoy & Gaimard, 1833). The objectives were to assess the photo-physiological parameters such as effective quantum yield at photosystem II (FPSII), relative maximum electron transport rate (rETRmax), maximum photo-chemical quenching (NPQmax), photosynthetic efficiency (?), photoinhibition (?) and Ik at fish bite-affected (BA) and non-affected (NA) coral parts at temperatures of 28°C and 32°C under low-light (10 µmol quanta m-2s-1) and moderate-light (110 µmol quanta m-2s-1) conditions for a duration of 48hr. FPSII, rETRmax and NPQmax were not negatively affected by fish predation conditions. Under moderate light, the rETRmax increased in the non-predated condition at 28°C but not at 32°C while the NPQmax exhibited a more pronounced increase at 32°C compared to the 28°C treatment. The absence of significant declines in FPSII and rETRmax accompanied by a significant increase in NPQmax at 32°C is indicative of a lack of photo-inhibition and an active quenching of energy in a non-harmful way at PSII. No significant interactions of temperature and predation condition and light and predation condition were found, indicating that short-term exposure of 2 days to an elevated temperature of 32°C and moderate light intensity of 110 µmol quanta m-2s-1 did not result in any exacerbated negative photo-physiological impacts of fish predation in P. lutea. These findings suggest that both fish-predated and non-predated conditions in P. lutea are equally tolerant to the tested elevated temperature level. Thus, ocean warming events may not differentially impact their photosynthetic activities.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Bellwood DR, Hughes TP, Folke C, Nyström M. 2004. Confronting the coral reef crisis. Nature 429 (6994): 827-833. DOI: 10.1038/nature02691.
Bhagooli R, Kaullysing D. 2019. Seas of Mauritius. World Seas: An Environmental Evaluation 253-277. DOI: 10.1016/B978-0-08-100853-9.00016-6.
Bhagooli R, Klaus R. 2014. Mauritius. In: Klaus R (Eds). Coral Reef Atlas and Outlook-South Western Indian Ocean Islands. Report to the Indian Ocean Commission. ISLANDS Project. Mauritius.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Chumun PK, Klaus R, Munbodhe V. 2021b. Status and sustainability of reefs and shorelines of the Republic of Mauritius. In: Gunputh RP (Eds). Sustainable Development Goals. Chapter 8. Star Publications Pvt. Ltd., New Delhi, India.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, Soondur M, Pilly SS, Beesoo R, Wijayawanti DP, Bachok ZB, Monrás VC, Casareto BE, Suzuki Y, Baker AC. 2021c. Chlorophyll fluorescence - a tool to assess photosynthetic performance and stress photo-physiology in symbiotic marine invertebrates and seaplants. Mar Pollut Bull 165: 112059. DOI: 10.1016/j.marpolbul.2021.112059.
Bonaldo RM, Bellwood DR. 2011. Parrotfish predation on massive Porites on the Great Barrier Reef. Coral Reefs 30 (1): 259-269. DOI: 10.1007/s00338-010-0669-3.
Bruckner AW, Bruckner RJ. 2015. Mechanical lesions and corallivory. Dis Coral: 242-265. DOI: 10.1002/9781118828502.ch17.
Denis V, Debreuil J, De Palmas S, Richard J, Guillaume MM, Bruggemann JH. 2011. Lesion regeneration capacities in populations of the massive coral Porites lutea at Réunion Island: Environmental correlates. Mar Ecol Prog Ser 428: 105-117. DOI: 10.3354/meps09060.
Edmunds PJ, Gates RD. 2008. Acclimatization in tropical reef corals. Mar Ecol Prof Ser 361: 307-310. DOI: 10.3354/meps07556.
Edmunds PJ. 2005. Effect of elevated temperature on aerobic respiration of coral recruits. Mar Biol 146 (4): 655-663. DOI: 10.1007/s00227-004-1485-5.
Fujise L, Yamashita H, Suzuki G, Sasaki K, Liao LM, Koike K. 2014. Moderate thermal stress causes active and immediate expulsion of photosynthetically damaged zooxanthellae (Symbiodinium) from corals. PLoS ONE 9 (12): p.e114321. DOI: 10.1371/journal.pone.0114321.
Genty B, Briantais J-M, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990 (1): 87-92. DOI: 10.1016/s0304-4165(89)80016-9.
Hoegh-Guldberg O. 2011. Coral reef ecosystems and anthropogenic climate change. Reg Environ Change 11 (1): 215-227. DOI: 10.1007/s10113-010-0189-2.
Hongo C, Yamano H. 2013. Species-specific responses of corals to bleaching events on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995-2009). PloS ONE 8 (4): e60952. DOI: 10.1371/journal.pone.0060952.
Huertas V, Morais RA, Bonaldo RM, Bellwood DR. 2021. Parrotfish corallivory on stress-tolerant corals in the Anthropocene. PLoS ONE 16 (9): p.e0250725. DOI: 10.1371/journal.pone.0250725.
Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-P A, Hoey A, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK. 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359 (6371): 80-83. DOI: 10.1126/science.aan8048.
Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystro?m M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301 (5635): 929-933. DOI: 10.1126/science.1085046.
Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC et al. 2017. Global warming and recurrent mass bleaching of corals. Nature 543 (7645): 373-377. DOI: 10.1038/nature21707.
Jokiel P, Coles SL. 1990. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8 (4): 155-162. DOI: 10.1007/BF00265006.
Jones GP, Syms C. 1998. Disturbance, habitat structure and the ecology of fishes on coral reefs. Aust J Ecol 23 (3): 287-297. DOI: 10.1111/j.1442-9993.1998.tb00733.x.
Kayal M, Vercelloni J, Lison de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M. 2012. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7 (10): e47363. DOI: 10.1371/journal.pone.0047363.
Littler MM, Taylor PR, Littler DS. 1989. Complex interactions in the control of coral zonation on a Caribbean reef flat. Oecologia 80 (3): 331-340. DOI: 10.1007/BF00379034.
Madeira C, Dias M, Ferreira A, Gouveia R, Cabral H, Diniz MS, Vinagre C. 2022. Does predation exacerbate the risk of endosymbiont loss in heat stressed hermatypic corals? Molecular cues provide insights into species-specific health outcomes in a multi-stressor ocean. Front Physiol 13: 801672. DOI: 10.3389/fphys.2022.801672.
Marshall PA, Baird AH. 2000. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral reefs 19 (2): 155-163. DOI: 10.1007/s003380000086.
McClanahan TR, Ateweberhan M, Graham NAJ, Wilson SK, Sebastián CR, Guillaume MM, Bruggemann JH. 2007. Western Indian Ocean coral communities: Bleaching responses and susceptibility to extinction. Mar Ecol Prof Ser 337: 1-13. DOI: 10.3354/meps337001.
McClanahan TR, Muthiga NA. 2021. Oceanic patterns of thermal stress and coral community degradation on the island of Mauritius. Coral Reefs 40 (1): 53-74. DOI: 10.1007/s00338-020-02015-4.
Meesters Y, Jansen JHC, Beersma DGM, Bouhuys AL, Van denHoofdakker RH. 1994. An attempt to prevent winter depres-sion by light exposure at the end of September. Biol Psychiatry 35: 284-286. DOI: 10.1016/0006-3223(94)91261-0.
Monroe AA, Ziegler M, Roik A, Röthig T, Hardenstine RS, Emms MA, Jensen T, Voolstra CR, Berumen ML. 2018. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE 13 (4): p.e0195814. DOI: 10.1371/journal.pone.0195814.
Mumby PJ. 2009. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28 (3): 761-773. DOI: 10.1007/s00338-009-0506-8.
Prachett MS, Hoey AS, Wilson SK, Messmer V, Graham NA. 2011. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3 (3): 424-452. DOI: 10.3390/d3030424.
Prachett MS, Messmer V, Reynolds A, Martin J, Clark TD, Munday PL, Tobin AJ, Hoey AS. 2013. Effects of climate change on reproduction, larval development, and adult health of coral trout (Plectropomus spp.). Project Report. Fisheries Research and Development Corporation. 76p. https://era.daf.qld.gov.au/id/eprint/2334/1/FRDC_FinalReport2010-554-DLD.pdf
Rice MM, Ezzat L, Burkepile DE. 2019. Corallivory in the Anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front Mar Sci 5: 525. DOI: 10.3389/fmars.2018.00525.
Rotjan RD, Dimond JL, Thornhill DJ, Leichter JJ, Helmuth BST, Kemp DW, Lewis SM. 2006. Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25: 361-368. DOI: 10.1007/s00338-006-0120-y.
Rotjan RD, Lewis SM. 2005. Selective predation by parrotfishes on the reef coral Porites astreoides. Mar Ecol Prog Ser 305: 193-201. DOI: 10.3354/meps305193.
Rotjan RD, Lewis SM. 2008. Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367: 73-91. DOI: 10.3354/meps07531.
Rotjan RD, Lewis SM. 2009. Predators selectively graze reproductive structures in a clonal marine organism. Mar Biol 156 (4): 569-577. DOI: 10.1007/s00227-008-1108-7.
Sully S, Burkepile DE, Donovan MK, Hodgson G, Van Woesik R. 2019. A global analysis of coral bleaching over the past two decades. Nat Commun 10 (1): 1-5. DOI: 10.1038/s41467-019-09238-2.
Van Veghel MLJ, Bak RPM. 1993. Intraspecific variation of a dominant Caribbean reef building coral Montastrea annularis: Genetic, behavioral and morphometric aspects. Mar Ecol Prog Ser 92: 255-265. DOI: 10.3354/meps092255.
Veron JEN. 2000. Corals of the World. Australian Institute of Marine Science, Townsville, Australia).
Warner ME, Fitt WK, Schmidt GW. 1999. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc Natl Acad Sci 96 (14): 8007-8012. DOI: 10.1073/pnas.96.14.8007.
Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NA. 2019. Coral reef ecosystem services in the Anthropocene. Funct Ecol 33 (6): 1023-1034. DOI: 10.1111/1365-2435.13331.
Zinke J, Hoell A, Lough JM, Feng M, Kuret AJ, Clarke H, Ricca V, Rankenburg K, McCulloch MT. 2015. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient. Nat Commun 6 (1): 1-9. DOI: 10.1038/ncomms9562.