Prevalence and thermal photo-physiological responses of Skeletal Eroding Band (SEB)-affected Acropora muricata from Mauritius Island




Abstract. Mundil SP, Jogee SY, Kaullysing D, Bhagooli R. 2023. Prevalence and thermal photo-physiological responses of Skeletal Eroding Band (SEB)-affected Acropora muricata from Mauritius Island. Indo Pac J Ocean Life 7: 48-53. The threat to coral reefs due to coral diseases has been on the rise since the late 1990s, and the effects of climate change-driven global warming and coral diseases have yet to be thoroughly investigated. This study aimed at investigating the prevalance of Skeletal Eroding Band (SEB), a coral diease resulting from the ciliate Halofolliculina corallasia, in Acropora muricata, at two sites namely Flic en Flac and Belle Mare around Mauritius Island and the thermal photo-physiological responses, in terms of effective quantum yield at photosystem II (?PSII), of SEB-affected and non-affected A. muricata, measured with a Diving-Pulse Amplitude Modulated (D-PAM) fluorometer. Affected colonies were identified using underwater field guides and their prevalence was estimated using a random swim method. The prevalence of SEB was highest at Belle Mare during late summer with a prevalence of 24.44 ± 1.93%. The thermal stress experiment consisting of 6 aquaria with 3 at 27? and 3 at 32? were set up with both SEB-affected and non-affected A. muricata for a duration of 19 hours. Both SEB-affected and non-affected A. muricata were influenced by high ttemperatures. The SEB-affected samples exhibited a higher susceptibility to 32? treatment as the ?PSII declined to almost zero after 6 hours of exposure. These findings suggest that the region of Belle Mare may be potentially at risk if exposed to high temperatures for extended periods and may lose up to 25% or so of its A. muricata cover during future thermal severe bleaching events.



Antonius AA, Lipscomb D. 2000. First protozoan coral-killer identified in the Indo-Pacific. Atoll Res Bull 481: 481. DOI: 10.5479/si.00775630.481.
Baird AH, Bhagooli R, Ralph PJ, Takahashi S. 2009. Coral bleaching: The role of the host. Trends Ecol Evol 24: 16-20. DOI: 10.1016/j.tree.2008.09.005.
Bhagooli R, Jogee SY, Kaullysing D, Ramah S. 2021. First report of White Syndrome Disease on branching Acropora at Saya de Malha, Mascarene Plateau, Western Indian Ocean. SI - Studies on the Mascarene Plateau. West. Indian Ocean J Mar 1: 189-192. DOI: 10.4314/wiojms.si2021.2.15.
Bhagooli R, Kaullysing D. 2019. Seas of Mauritius. In: World Seas: An Environmental Evaluation. Academic Press, United States. DOI: 10.1016/B978-0-08-100853-9.00016-6.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Taleb-Hossenkhan N. 2017. A first field report of coral diseases around Mauritius Island, Western Indian Ocean. West. Indian Ocean J Mar Sci 1: 71-72.
Bhagooli R, Sheppard C. 2012. Prediction of Recurrences of Mass Coral Bleaching / Mortality and Vulnerability of Reef-Building Corals to Climate Change in Mauritian and Japanese Waters. University of Mauritius, Mauritius.
Bruckner AW. 2015. History of coral disease research. Dis Coral: 52-84. DOI: 10.1002/9781118828502.ch5.
Buddemeier RW, Fautin DG. 1993. Coral bleaching as an adaptive mechanism. Biol Sci 43: 320-326. DOI: 10.2307/1312064.
Coral Reefs. 2015. In: IUCN. Accessed 14 October 2022.
Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. 2014. Changes in the global value of ecosystem services. Glob. Environ Change 26: 152-158. DOI: 10.1016/j.gloenvcha.2014.04.002.
Cróquer A, Bastidas C, Lipscomb D. 2006. Folliculinid ciliates: A new threat to Caribbean corals? Dis Aquat Org 69: 75-78. DOI: 10.3354/dao069075.
Erez J, Reynaud S, Silverman J, Schneider K, Allemand D. 2010. Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds). Coral Reefs: An Ecosystem in Transition. Springer, Dordrech. DOI: 10.1007/978-94-007-0114-4_10.
Ferrario, F, Beck, MW, Storlazzi, CD, Micheli, F, Shepard, CC, Airoldi, L. 2014. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat Commun 5: 3794. DOI: 10.1038/ncomms4794.
Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica and Biophysica Acta 990: 87-92. DOI: 10.1016/S0304-4165(89)80016-9.
Harvell CD. 1999. Emerging marine diseases--Climate links and anthropogenic factors. Science 285: 1505-1510. DOI: 10.1126/science.285.5433.1505.
Harvell D, Jordán-Dahlgren E, Merkel S, Rosenberg E, Raymundo L, Smith G, Weil E, Willis B. 2007. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20: 172-195. DOI: 10.5670/oceanog.2007.91.
Hédouin L, Berteaux-Lecellier V. 2014. Traditional vs new approaches for assessing coral health: A global overview and the paradigm of French polynesia. J Mar Sci Technol 22:25-35. DOI: 10.6119/JMST-013-0813-2.
Hoegh-Guldberg O, Hoegh-Guldberg H, Sumaila R. 2015. Reviving the Ocean Economy: The Case for Action - 2015. WWF - World Wide Fund For Nature (Formerly World Wildlife Fund), Gland, Switzerland.
Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME. 2007. Coral Reefs under rapid climate change and ocean acidification. Science 318: 1737-1742. DOI: 10.1126/science.1152509.
Howells EJ, Vaughan GO, Work TM, Burt JA, Abrego D. 2020. Annual outbreaks of coral disease coincide with extreme seasonal warming. Coral Reefs 39: 771-781. DOI: 10.1007/s00338-020-01946-2.
Lamb JB, True JD, Piromvaragorn S, Willis BL. 2014. Scuba diving damage and intensity of tourist activities increases coral disease prevalence. Biol Conserv 178: 88-96. DOI: 10.1016/j.biocon.2014.06.027.
Mauritius Tourism Revenues. 2020. 1995-2019 Data, 2020-2022 Forecast, Calendar. In: Accessed 5 April 2020.
McDevitt-Irwin JM, Baum JK, Garren M, Thurber RLV. 2017. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci 4 (1): 1-16. DOI: 10.3389/fmars.2017.00262.
Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. Ecol Econ 29: 215-233. DOI: 10.1016/s0921-8009(99)00009-9.
Morais J, Cardoso APLR, Santos BA. 2022. A global synthesis of the current knowledge on the taxonomic and geographic distribution of major coral diseases. Environ Adv 8: 100231. DOI: 10.1016/j.envadv.2022.100231.
Mulhall M. 2009. Saving the rainforest of the sea: An analysis of international efforts toconserve coral reefs. Duke Environ Law Policy Forum 19: 321-352.
Page C, Baker D, Harvell C, Golbuu Y, Raymundo L, Neale S, Rosell K, Rypien K, Andras J, Willis B. 2009. Influence of marine reserves on coral disease prevalence. Dis Aquat Org 87: 135-150. DOI: 10.3354/dao02112.
Page CA, Willis BL. 2007. Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 27: 257-272. DOI: 10.1007/s00338-007-0317-8.
Peters EC, Halas JC, McCarty HB. 1986. Calicoblastic neoplasms in Acropora palmata, with a review of reports on anomalies of growth and form in corals. J Natl Cancer Ins 76: 895-912. DOI: 10.1093/jnci/76.5.895.
Peters EC. 2015. Diseases of coral reef organisms. Coral Reefs in the Anthropocene 147-178. DOI: 10.1007/978-94-017-7249-5_8.
Pillay R, Terashima H, Venkatasami A, Uchida H. 2002. Field guide to corals of Mauritius. Albion Fisheries Research Centre, Ministry of Fisheries, Albion, Petite Riviere, Mauritius.
Riegl B. 2002. Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Mar Biol 140: 29-40. DOI: 10.1007/s002270100676.
Rodríguez S, Cróquer A, Guzmán HM, Bastidas C. 2008. A mechanism of transmission and factors affecting coral susceptibility to Halofolliculina sp. infection. Coral Reefs 28: 67-77. DOI: 10.1007/s00338-008-0419-y.
Séré M, Chabanet P, Turquet J, Quod J, Schleyer M. 2015. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs. Dis Aquat Org 114: 249-261. DOI: 10.3354/dao02865.
Sutherland K, Porter J, Torres C. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser 266: 273-302. DOI: 10.3354/meps266273.
Sweet MJ, Séré MG. 2016. Ciliate communities consistently associated with coral diseases. J Sea Res 113: 119-131. DOI: 10.1016/j.seares.2015.06.008.
Thurber RV, Mydlarz LD, Brandt M, Harvell D , Weil E, Raymundo L, Willis BL, Langevin S, Tracy AM, Littman R, Kemp KM, Dawkins P, Prager KC, Garren M, Lamb J. 2020. Deciphering coral disease dynamics: Integrating host, microbiome, and the changing environment. Front Ecol Evol 8: 1-18. DOI: 10.3389/fevo.2020.575927.
Traylor-Knowles N, Connelly MT. 2017. What is currently known about the effects of climate change on the coral immune response. Curr Clim Change Rep 3: 252-260. DOI: 10.1007/s40641-017-0077-7.
Veron J. 2000. Corals of the World, 1st ed. Australian Institute of Marine Science and CRR Ald Pty Ltd, Australia.
Veron J. 2011. Ocean acidification and coral reefs: An emerging big picture. Diversity 3: 262-274. DOI: 10.3390/d3020262.
Weil E, Raymundo LJ, Beeden R, Page CA. 2015. Underwater Cards for Assessing Coral Health on Indo-Pacific Reefs. Coral Reef Targeted Research and Capacity Building for Management Program. Currie Communications, Melbourne.
Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, Iglesias-Prieto R, Palmer C, Bythell JC, Ortiz J-C, Loya Y, van Woesik R. 2011. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 62: 205. DOI: 10.1071/mf10254.