Differential responses of effective quantum yield to acute thermal stress in scleractinian corals including pre- and post-transplanted Acropora muricata

##plugins.themes.bootstrap3.article.main##

SRUTI JEETUN
MELANIE RICOT
NAWSHEEN TALEB-HOSSENKHAN
DEEPEEKA KAULLYSING
JEAN-FRANÇOIS FLOT
RANJEET BHAGOOLI

Abstract

Abstract. Jeetun S, Ricot M, Taleb-Hossenkhan N, Kaullysing D, Flot J-F, Bhagooli R. 2023. Differential responses of effective quantum yield to acute thermal stress in scleractinian corals including pre- and post-transplanted Acropora muricata. Indo Pac J Ocean Life 6: 54-63. Global climate change has had a serious impact on the health status of coral reefs and has led to the use of active reef restoration measures to remediate the decline in coral cover and assist in the recovery of depleted coral populations. This study aimed to assess the thermal photo-physiological responses of Acropora muricata pre- and post-transplantation from reef, lagoon, and nearshore stations to the experimental nearshore station and of four other non-transplanted coral species, namely, Acropora cythereaGalaxea fascicularisPocillopora damicornis and Lithophyllon repanda from the reef. A visual assessment of dinoflagellate symbiont loss was conducted during summer bleaching events in 2011, 2016, and 2019 for A. muricata at the three stations, nearshore, lagoon, and reef, and for the other four corals at the reefs of Belle Mare (BM), MauritiusThe 2016 bleaching event appeared to be more severe for P. damicornis and L. repanda. A first experiment was carried out using pre-transplanted A. muricata from the reef, lagoon, and nearshore, respectively, in 2012, and a second one was conducted with post-transplanted A. muricata from the nearshore station in 2020, and A. cythereaG. fascicularisP. damicornis and L. repanda from the reef in both 2012 and 2020. The coral specimens were incubated at 28°C, 30°C, and 32°C for 3hrs. The results showed an enhanced photo-physiological thermo-tolerance through the measurement of the effective quantum yield of A. muricata following transplantation from the reef and lagoon to the nearshore station. Significantly different photo-physiological responses of the other four corals occurring on the reef were also reported between 2012 and 2020. These findings suggest that the nearshore transplanted A. muricata may have acclimatized, leading to enhanced thermo-tolerance when exposed to 30°C and A. cytherea among the test corals may have improved its thermo-tolerance at 30°C and 32°C possibly following several bleaching events. Further studies using longer experimental exposures and involving the symbiont species, antioxidant responses, symbiont cell density, and chlorophyll content along with coral genetics may shed light on possible mechanisms for such enhanced thermo-tolerance.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Baker AC, Glynn PW, Riegl B. 2008. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80 (4): 435-471. DOI: 10.1016/j.ecss.2008.09.003.
Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, Gough J. 2015. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci USA 112 (38): 11893-8. DOI: 10.1073/pnas.1513318112.
Bhagooli R, Hidaka M. 2003. Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291 (2): 181-197. DOI: 10.1016/S0022-0981(03)00121-7.
Bhagooli R, Hidaka M. 2006. Thermal inhibition and recovery of the maximum quantum yield of photosystem II and the maximum electron transport rate in zooxanthellae of a reef-building coral. Galaxea, J Jpn Coral Reef Soc 8 (1): 1-11. DOI: 10.3755/jcrs.8.1.
Bhagooli R, Jawaheer S, Dyall SD, Kaullysing D. 2021c. Fragment-size dependent coral transplantation of Acropora muricata on concrete blocks at Belle Mare: A potential tool for sustaining Mauritian corals. In: Gunputh RP (eds). Sustainable Development Goals. Star Publications Pvt. Ltd, New Delhi.
Bhagooli R, Kaullysing D. 2019. Seas of Mauritius – Chapter 12. In: Sheppard CCR (eds). World Seas: An Environmental Evaluation, 2nd Edition, Volume II: The Indian Ocean to the Pacific. Elsevier, Singapore. DOI: 10.1016/B978-0-08-100853-9.00016-6.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Chumun PK, Klaus R, Munbodhe V. 2021a. Status and sustainability of reefs and shorelines of the Republic of Mauritius. In: Gunputh RP (eds). Sustainable Development Goals. Star Publications Pvt. Ltd, New Delhi.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, Soondur M, Pilly SS, Beesoo R, Wijayawanti DP, Bachok ZB, Monrás VC, Casareto BE, Suzuki Y, Baker AC. 2021d. Chlorophyll fluorescence - a tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Mar Pollut Bull 165: 112059. DOI: 10.1016/j.marpolbul.2021.112059.
Bhagooli R, Soondur M, Ramah S, Gopeechund A, Jeetun S, Kaullysing D. 2021b. Photo-physiology of healthy and bleached corals from the Mascarene Plateau. SI – Studies on the Mascarene Plateau, Western Indian Ocean J Mar Sci 2: 109-120. DOI: 10.4314/wiojms.si2021.2.8.
Bhagooli R, Taleb-Hossenkhan N. 2012. Thermal spatial heterogeneity and coral bleaching: implications for habitat refuges. Proceedings of the 12th International Coral Reef Symposium 2012, Cairns, Australia.
Bhagooli R, Yakovleva I. 2004. Differential bleaching susceptibility and mortality patterns among four corals in response to thermal stress. Symbiosis 37: 121-136.
Bhagooli R. 2009. Symbiont dependent thermal bleaching susceptibility in two reef-building corals, Stylophora pistillata and Platygyra ryukyuensis. Univ Mauritius Res J 15: 608-625.
Bhagooli R. 2010. Photosystem II responses to thermal and/or light stresses of distinct endosymbiontic ITS2 Symbiodinium types isolated from marine animal hosts. J Environ Res Dev 5 (1): 117-133.
Brown BE. 1997. Disturbances to reefs in recent times. In: Birkeland C (eds). Life and Death of Coral Reefs, Kluwer Academic Publishers, Boston, Massachusetts. DOI: 10.1007/978-1-4615-5995-5_15.
Coles SL, Brown BE. 2003. Coral bleaching—capacity for acclimatization and adaptation. Adv Mar Biol 46: 183-223. DOI: 10.1016/s0065-2881(03)46004-5.
Cunning R, Silverstein RN, Baker AC. 2015. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc Biol Sci 282 (1809): 20141725. DOI: 10.1098/rspb.2014.1725.
Douglas AE. 2003. Coral bleaching––how and why? Mar Pollut Bull 46 (4): 385-392. DOI: 10.1016/S0025-326X(03)00037-7.
Eakin CM, Liu G, Gomez AM, De La Cour JL, Heron SF, Skirving WJ, Geiger EF, Tirak KV, Strong AE. 2016. Global coral bleaching 2014-2017: Status and an appeal for observations. Reef Encount 31 (1): 20-26.
Edwards AJ, Gomez ED. 2007. Reef Restoration Concepts and Guidelines: Making Sensible Management Choices in the Face of Uncertainty. Coral Reef Targeted Research and Capacity Building for Management Program, St Lucia, Australia.
Fujioka Y. 1999. Mass destruction of the hermatypic corals during a bleaching event in Ishigaki Island, southwestern Japan. J Jpn Coral Reef Soc 1: 41-50. DOI: 10.3755/JCRS.1999.41.
Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990 (1): 87-92. DOI: 10.1016/S0304-4165(89)80016-9.
Goreau TJ, Hilbertz W. 2005. Marine ecosystem restoration: Costs and benefits for coral reefs. World Res Rev 17 (3): 375-409.
Guest JR. Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM. 2012. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7 (3): 1-8. DOI: 10.1371/journal.pone.0033353.
Hughes T, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC. 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359 (6371): 80-83. DOI: 10.1126/science.aan8048.
Jones RJ. 2008. Coral bleaching, bleaching-induced mortality, and the adaptive significance of the bleaching response. Mar Biol 154 (1): 65-80. DOI: 10.1007/s00227-007-0900-0.
Kaullysing D, Gopeechund A, Mattan-Moorgawa S, Taleb-Hossenkhan N, Kulkarni B, Bhagooli R. 2016. Increased density of the corallivore Drupella cornus on Acropora muricata colonies overgrown by Padina boryana. In: Proceedings of the 13th International Coral Reef Symposium, Honolulu, 19th-24th June 2016.
Kaullysing D, Taleb-Hossenkhan N, Kulkarni B, Bhagooli R. 2019. Variations in the density of two ectoparasitic gastropods (Coralliophila spp.) on scleractinian corals on a coast-reef scale. Symbiosis 78 (1): 65-71. DOI: 10.1007/s13199-019-00608-4.
Kemp D, Hernandez-Pech X, Iglesias-Prieto R, Fitt W, Schmidt G. 2014. Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol Oceanogr 59 (3): 788-797. DOI:10.4319/lo.2014.59.3.0788.
Kleppel GS, Dodge RE, Reese CJ. 1989. Changes in pigmentation associated with the bleaching of stony corals. Limnol Oceanogr 34 (7): 1331-1335. DOI: 10.4319/LO.1989.34.7.1331.
LaJeunesse TC, Parkinson JE; Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28: 1-11. DOI: 10.1016/j.cub.2018.07.008.
LaJeunesse TC, Smith RT, Finney J, Oxenford H. 2009. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’event. Proc Biol Sci 276 (1676): 4139-4148. DOI: 10.1098/rspb.2009.1405.
Louis YD, Bhagooli R, Seveso D, Maggioni D, Galli P, Vai M, Dyall SD. 2020. Local acclimatization?driven differential gene and protein expression patterns of Hsp70 in Acropora muricata: Implications for coral tolerance to bleaching. Mol Ecol 29 (22): 4382-4394. DOI: 10.1111/mec.15642.
Louis YD, Dyall SD, Bhagooli R. 2016a. Coast-reef scale physiological responses of Acropora muricata harboring Symbiodinium clade A. In: Proceedings of the 13th International Coral Reef Symposium, Honolulu, Hawaii, 19th-24th June 2016.
Louis YD, Kaullysing D, Gopeechund A, Mattan-Moorgawa S, Bahorun T, Dyall SD, Bhagooli R. 2016b. In hospite Symbiodinium photophysiology and antioxidant responses in Acropora muricata on a coast-reef scale: Implications for variable bleaching patterns. Symbiosis 68 (1): 61-72. DOI: 10.1007/s13199-016-0380-4.
Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, Van Woesik R. 2001. Coral bleaching: The winners and the losers. Ecol Lett 4 (2): 122-131. DOI: 10.1046/j.1461-0248.2001.00203.x.
Mattan-Moorgawa S, Bhagooli R, Rughooputh SDDV. 2012. Thermal stress physiology and mortality responses in scleractinian corals of Mauritius. In Proceedings of the 12th International Coral Reef Symposium.
Mattan-Moorgawa S, Rughooputh SD, Bhagool R. 2018. Variable PSII functioning and bleaching conditions of tropical scleractinian corals pre-and post-bleaching event. Indo Pac J Ocean Life 2 (1): 1-10. DOI: 10.13057/oceanlife/o020101.
McClanahan TR, Muthiga NA. 2021. Oceanic patterns of thermal stress and coral community degradation on the island of Mauritius. Coral Reefs 40 (1): 53-74. DOI: 10.1007/s00338-020-02015-4.
Middlebrook R, Hoegh-Guldberg O, Leggat W. 2008. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211 (7): 1050-1056. DOI: 10.1242/jeb.013284.
Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. Ecol Econ 29 (2): 215-233. DOI: 10.1016/S0921-8009(99)00009-9.
Obura D, Gudka M, Abdou Rabi F, Bacha Gian S, Bigot L, Bijoux J, Freed S, Maharavo J, Munbodhe V, Mwaura J, Porter S. 2017. Coral reef status report for the Western Indian Ocean. Global Coral Reef Monitoring Network (GCRMN). International Coral Reef Initiative (ICRI).
Oliver TA, Palumbi SR. 2011. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30 (2): 429-440. DOI: 10.1007/s00338-011-0721-y.
Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. 2014. Mechanisms of reef coral resistance to future climate change. Science 344 (6186): 895-898. DOI: 10.1126/science.1251336.
Pratchett MS, McCowan D, Maynard JA, Heron SF. 2013. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia. PLoS ONE 8 (7): p.e70443. DOI: 10.1371/journal.pone.0070443.
Precht WF. 2006. Coral Reef Restoration Handbook. CRC press, Florida. DOI: 10.1201/9781420003796.
Reynolds J, Bruns B, Fitt W, Schmidt G. 2008. Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. PNAS 105 (36): 13674-12678. DOI: 10.1073/pnas.0805187105.
Safaie A, Silbiger NJ, McClanahan TR, Pawlak G, Barshis DJ, Hench JL, Rogers JS, Williams GJ, Davis KA. 2018. High frequency temperature variability reduces the risk of coral bleaching. Nat Commun 9 (1): 1-2. DOI: 10.1038/s41467-018-04074-2.
Schoepf V, Stat M, Falter JL, McCulloch MT. 2015. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep 5 (1): 1-14. DOI: 10.1038/srep17639.
Schwiesow MW, Samayoa AM, Torres J, Leimbach A, Santiago-Rivera G, Tepper CS. 2021. Symbiodinium distribution patterns in millepores in the Caribbean: South Water Cay, Belize and San Salvador, The Bahamas. Marine Sci 9 (1): 1-10. DOI: 10.5923/j.ms.20210901.01.
Silverstein RN, Cunning R, Baker AC. 2015. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol 21 (1): 236-249. DOI: 10.1111/gcb.12706.
Spalding MD, Brown BE. 2015. Warm-water coral reefs and climate change. Science 350 (6262): 769-771. DOI: 10.1126/science.aad0349.
Spalding MD, Ravilious C, Green EP. 2001. World Atlas of Coral Reefs. The University of California Press, Berkeley, California, USA.
Suggett DJ, Smith DJ. 2011. Interpreting the sign of coral bleaching as friend vs. foe. Glob Chang Biol 17 (1): 45-55. DOI: 10.1111/j.1365-2486.2009.02155.x.
Swain TD, Westneat MW, Backman V, Marcelino LA. 2018. Phylogenetic analysis of symbiont transmission mechanisms reveal evolutionary patterns in thermotolerance and host specificity that enhance bleaching resistance among vertically transmitted Symbiodinium. Eur J Phycol 53 (4): 443-459. DOI: 10.1080/09670262.2018.1466200.
Venn AA, Loram JE, Douglas AE. 2008. Photosynthetic symbioses in animals. J Exp Bot 59: 1069-1080. DOI: 10.1093/jxb/erm328.
Veron JEN. 2000. Corals of the World. Australian Institute of Marine Science, Townsville, Australia.
Wilkinson C. 2000. Status of Coral Reefs of the World: 2000. Australian Institute of Marine Science, Queensland.
Yakovleva I, Bhagooli R, Takemura A, Hidaka M. 2005. Differential susceptibility to oxidative stress of two scleractinian corals: role of antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 139 (4): 721-730. DOI: 10.1016/j.cbpc.2004.08.016.
Zhou G, Cai L, Li Y, Tong H, Jiang L, Zhang Y, Lei X, Guo M, Liu S, Qian PY, Huang H. 2017. Temperature-driven local acclimatization of Symbiodinium hosted by the coral Galaxea fascicularis at Hainan Island, China. Front Microbiol 8: 2487. DOI: 10.3389/fmicb.2017.02487.