Differential photo-physiological responses of two giant clam species to elevated temperature stress from Rodrigues Island, Western Indian Ocean

##plugins.themes.bootstrap3.article.main##

SUNDY RAMAH
DEEPEEKA KAULLYSING
MOUNESHWAR SOONDUR
NAWSHEEN TALEB-HOSSENKHAN
RANJEET BHAGOOLI

Abstract

Abstract. Ramah S, Kaullysing D, Soondur M, Taleb-Hossenkhan N, Bhagooli R. 2023. Differential photo-physiological responses of two giant clam species to elevated temperature stress from Rodrigues Island, Western Indian Ocean. Indo Pac J Ocean Life 7: 64-70. Bleaching events leading to mass mortality of coral reef and its associated symbiotic organisms have become an alarming issue worldwide. However, as compared to corals, little has been documented regarding giant clams’ (Tridacnines) thermal photo-physiological susceptibility. Triplicate specimens of the small giant clam Tridacna maxima and the fluted giant clam T. squamosa collected from the lagoon of Rodrigues Island, Western Indian Ocean were exposed at two temperatures, 29°C and 32°C, under a constant low light intensity of approximately 200 µmol quanta m-2 s-1 over a 12-hour duration. The photo-physiological parameters namely, effective quantum yield of photosystem II (?PSII), relative maximum Electron Transport Rate (rETRmax) and maximum Non-Photochemical Quenching (NPQmax) were determined using a Diving Pulse-Amplitude-Modulated (D-PAM) fluorometer prior to and after 3 and 12 hours of exposures. At 29°C the photo-physiological parameters did not vary significantly for both species. At 32°C, T. squamosa and T. maxima exhibited significant declines in ?PSII as at 3 and 12 hours, respectively. The rETRmax of T. squamosa showed a significant decrease at 3 hours while both species showed a significant reduction in their NPQmax functioning as from 3 hours. The experiment also recorded the disintegration of the mantle tissue in T. squamosa after 12 hours. These findings indicate that T. squamosa is thermally more susceptible than T. maxima. Further in-depth investigations on symbionts genetic types and antioxidant responses of both the Tridacna host and symbionts are required to thoroughly understand giant clams’ variable heat stress responses in the era of ocean warming.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Andrefouet S, Van Wynsberge S, Kabbadi L, Wabnitz CCC, Menkes C, Tamata T, Pahuatini M, Tetairekie I, Teaka I, Ah Scha T, Teaka T, Remoissenet G. 2017. Adaptive management for the sustainable exploitation of lagoon resources in remote islands: Lessons from a massive El Niño-induced giant clam bleaching event in the Tuamotu atolls (French Polynesia). Environ Conserv 2017: 1-11. DOI: 10.1017/S0376892917000212.
Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R. 2009. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct Ecol 23: 539-550. DOI: 10.1111/j.1365-2435.2008.01531.x.
Baillie BK, Belda-Baillie CA, Maruyama T. 2000b. Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36: 1153-1161. DOI: 10.1046/j.1529-8817.2000.00010.x.
Baillie BK, Belda-Baillie CA, Silvestre V, Sison M, Gomez AV, Gomez ED, Monje V. 2000a. Genetic variation in Symbiodinium isolates from giant clams based on Random-Amplified-Polymorphic DNA (RAPD) patterns. Mar Biol 136: 829-836. DOI: 10.1007/s002270000290.
Baker AC. 2001. Ecosystems: Reef corals bleach to survive change. Nature 411: 765-766. DOI: 10.1038/35081151.
Bhagooli R, Hidaka M. 2003. Comparison of stress susceptibility of in-hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291: 181-197. DOI: 10.1016/S0022-0981(03)00121-7.
Bhagooli R, Jogee S, Kaullysing D, Ramah S. 2021d. First report of White Syndrome Disease on branching Acropora at Saya de Malha, Mascarene Plateau. West Indian Ocean J Mar Sci 2: 189-192. DOI: 10.4314/wiojms.si2021.2.15.
Bhagooli R, Kaullysing D. 2019. Seas of Mauritius - Chapter 12. In: CCR Sheppard (eds) World Seas: An Environmental Evaluation, 2nd Edition, Volume II: The Indian Ocean to the Pacific. Elsevier. Academic Press. DOI: 10.1016/B978-0-08-100853-9.00016-6.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Chumun PK, Klaus R, Munbodhe V. 2021b. Status and sustainability of reefs and shorelines of the Republic of Mauritius. In: Gunputh RP (Eds). Sustainable Development Goals. Chapter 8. Star Publications Pvt. Ltd., New Delhi, India.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, Soondur M, Pilly SS, Beesoo R, Wijayawanti DP, Bachok ZB, Monrás VC, Casareto BE, Suzuki Y, Baker AC. 2021c. Chlorophyll fluorescence - a tool to assess photosynthetic performance and stress photo-physiology in symbiotic marine invertebrates and seaplants. Mar Pollut Bull 165: 112059. DOI: 10.1016/j.marpolbul.2021.112059.
Bhagooli R, Sheppard CCR. 2012. Prediction of recurrences of mass coral bleaching / mortality and vulnerability of reef-building corals to climate change in Mauritian and Japanese waters. Univ Maurit Res J 18A: 105-121. DOI: 10.1038/nature01987.
Bhagooli R, Soondur M, Ramah S, Gopeechund A, Jeetun S, Kaullysing D. 2021a. Photo-physiology of healthy and bleached corals from the Mascarene Plateau. SI - Studies on the Mascarene Plateau. West Indian Ocean J Mar Sci 2: 109-120. DOI: 10.4314/wiojms.si2021.2.8.
Bhagooli R, Taleb-Hossenkhan N. 2012. Thermal spatial heterogeneity and coral bleaching: implications for habitat refuges; Proceedings of the 12th International Coral Reef Symposium. Cairns 9-13 July 2012. [Australia]
Bhagooli R. 2009. Symbiont dependent thermal bleaching susceptibility in two reef-building corals, Stylophora pistillata and Platygyra ryukyuensis. Univ Maurit Res J 15: 608-625.
Bhagooli R. 2010. Photosystem II responses to thermal and/or light stresses of distinct endosymbiontic ITS2 Symbiodinium types isolated from marine animal hosts. J Environ Res Dev 5 (1): 117-133.
Bhagooli R. 2013. Inhibition of Calvin-Benson cycle suppresses the repair of photosystem II in Symbiodinium: Implications for coral bleaching. Hydrobiologia 714: 183-190. DOI 10.1007/s10750-013-1535-4.
Blidberg E, Elfwing T, Plantman P, Tedengren M. 2000. Water temperature influences on physiological behaviour in three species of giant clams (Tridacnidae). Proc 9th Intl Coral Reef Symp 1: 561-565.
Brahmi C, Chapron L, Le Moullac G, Soyez C, Beliaeff B, Lazareth CE, Gaertner-Mazouni N, Vidal-Dupiol J. 2021. Effects of elevated temperature and pCO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima. Conserv Physiol 9 (1): 1-17. DOI: 10.1093/conphys/coab041.
Brown B, Dunne R, Goodson M, Douglas AE. 2000. Bleaching patterns in reef corals. Nature 142-143. DOI: 10.1038/35004657.
Brown BE, Le Tissier MDA, Bythell JC. 1995. Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Mar Biol 122: 655-663. DOI: 10.1007/BF00350687.
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771-1789. DOI: 10.1890/03-9000.
Burghardt I, Wa?gele H. 2014. The symbiosis between the “solar-powered” nudibranch Melibe engeli Risbec, 1937 (Dendronotoidea) and Symbiodinium sp. (Dinophyceae). J Moll Stud 80: 508-517. DOI: 10.1093/mollus/eyu043.
Clark MS, Thorne MAS, Amaral A, Vieira F, Batista FM, Reis J, Power DM. 2013. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: The Pacific oyster, Crassostrea gigas. Ecol Evol 3 (10): 3283-3297. DOI: 10.1002/ece3.719.
Deboer T, Baker A, Erdmann M, Ambariyanto JP, Barber P. 2012. Patterns of Symbiodinium distribution in three giant clam species across the biodiverse Bird’s head region of Indonesia. Mar Ecol Prog Ser 444: 117-132. DOI: 10.3354/meps09413.
Downs CA, Kramarsky-Winter E, Martinez J, Kushmaro A, Woodley CM, Loya Y, Ostrander GK. 2009. Symbiophagy as a cellular mechanism for coral bleaching. Autophagy 5 (2): 211-6. DOI: 10.4161/auto.5.2.7405.
Dubousquet V, Gros E, Berteaux-Lecellier V, Viguier B, Raharivelomanana P, Bertrand C, Lecellier GJ. 2016. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biol Open 5: 1400-1407. DOI: 10.1242/bio.017921.
Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC. 2004. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11: 1213-1222. DOI: 10.1038/sj.cdd.4401484.
Eckman W, Vicentuan-Cabaitan K, Todd PA. 2014. Observations on the hyposalinity tolerance of fluted giant clam (Tridacna squamosa, Lamarck 1819) Larvae. Nat Singap 7: 111-116. DOI: 10.1007%2Fs00227-014-2545-0.
Fujise L, Yamashita H, Suzuki G, Koike K. 2013. Expulsion of zooxanthellae (Symbiodinium) from several species of scleractinian corals: Comparison under non-stress conditions and thermal stress conditions. Galaxea 15: 29-36. DOI: 10.3755/galaxea.15.29.
Gates RD, Baghdasarian G, Muscatine L. 1992. Temperature stress causes host cell detachment in symbiotic Cnidarians: Implications for coral bleaching. Biol Bull 182 (3): 324-332. DOI: 10.2307/1542252.
Gegner HM, Ziegler M, Ra?decker N, Buitrago-Lo?pez, Aranda M, Voolstra CR. 2017. High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open 6: 1943-1948. DOI: 10.1242/bio.028878.
Ghoora MD, Pilly SS, Chumun PK, Jawaheer SJ, Bhagooli R. 2018. Short-term effects of heavy metal and temperature stresses on the photo-physiology of Symbiodinium isolated from the coral Fungia repanda. Ocean Life 2 (1): 11-20. DOI: 10.13057/oceanlife/o020102.
Goreau TJ, Hayes RL. 1994. Coral bleaching and ocean “Hot Spots”. Ambio 23: 176 - 180.
Hoegh-Guldberg O, Bruno JF. 2010. The impact of climate change on the world’s marine ecosystems. Science 328 (5985): 1523-1528. DOI: 10.1126/science.1189930.
Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318 (5857): 1737-1742. DOI: 10.1126/science.1152509.
Junchompoo C, Sinrapasan N, Penpain C, Patsorn P. 2013. Changing seawater temperature effects on giant clams bleaching, Mannai Island, Rayong province, Thailand. Conference paper: Proceedings of the Design Symposium on Conservation of Ecosystem. The 12th SEASTAR2000 workshop, 71-76. DOI: 10.14989/176186. [Thailand]
Kobluk DR, Lysenko MA. 1994. "Ring" bleaching in southern Caribbean Agaricia agaricites during rapid water cooling. Bull Mar Sci 54 (1): 142-150.
Kurihara H, Kato S, Ishimatsu A. 2007. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1: 91-98. DOI: 10.3354/ab00009.
Lesser MP. 1997. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16: 187-192. DOI: 10.1007/s003380050073.
Lough JM. 2000. 1997-98: Unprecedented thermal stress to coral reefs? Geophys Res Lett 27: 3901-3904. DOI: 10.1029/2000GL011715.
Mackenzie BW, Waite DW, Taylor MW. 2015. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol 6: 1-11. DOI: 10.3389%2Ffmicb.2015.00130.
Mattan-Moorgawa S, Bhagooli R, Rughooputh SDDV. 2012. Thermal stress physiology and mortality responses in scleractinian corals of Mauritius: Proceedings of the 12th International Coral Reef Symposium. Cairns, 9-13 July 2012. [Australia]
Mattan-Moorgawa S, Chumun PK, Taleb-Hossenkhan N, Rughooputh SDDV, Bhagooli R. 2020. Variable thermal and biochemical stress responses of tissue balls from Lithophyllon repanda, Pocillopora damicornis and Acropora muricata. Galaxea, J Coral Reefs Stud 22: 37-50. DOI: 10.3755/galaxea.22.1_37.
Neely KL, Shea CP, Macaulay KA, Hower EK, Dobler MA. 2021. Short- and long-term effectiveness of coral disease treatments. Front Mar Sci 8: 675349. DOI: 10.3389/fmars.2021.675349.
Norton JH, Shepherd MA, Long HM, Fitt WK. 1992. The zooxanthellar tubular system in the giant clam. Biol Bull 183: 503-506. DOI: 10.2307/1542028.
Pappas MK, He S, Hardenstine RS, Kanee H, Berumen ML. 2017. Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the central Red Sea. Mar Biodivers 47: 1-14. DOI: 10.1007/s12526-017-0715-2.
Parker LM, Ross PM, O’connor W. 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Change Biol 15 (9): 2123-2136. DOI: 10.1111/j.1365-2486.2009.01895.x.
Ralph PJ, Gademann R, Larku AWD. 2001. Zooxanthellae expelled from bleached corals at 33°C are photosynthetically competent. Mar Ecol Prog Ser 220: 163-168. DOI: 10.3354/meps220163.
Ramah S, Taleb-Hossenkhan N, Bhagooli R. 2017. Differential substrate affinity between two giant clam species, Tridacna maxima and Tridacna squamosa, around Mauritius. West Indian Ocean J Mar Sci 1: 13-20.
Ramah S, Taleb-Hossenkhan N, Todd P, Neo, ML, Bhagooli R. 2019. Drastic decline in giant clams (Bivalvia: Tridacninae) around Mauritius Island, Western Indian Ocean: Implications for conservation and management. Mar Biodivers 49: 815-823. DOI: 10.1007/s12526-018-0858-9.
Rodolfo-Metalpa R, Houlbrèque F, Tambutté E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer JM. 2011. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change (Lett) 1: 308-312. DOI: 10.1038/nclimate1200.
Rowan R, Knowlton N, Baker A, Jara J. 1997. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388: 265-269. DOI: 10.1038/40843.
Rowan R. 2004. Coral bleaching Thermal adaptation in reef coral symbionts. Nat (Brief Commun) 430: 742. DOI: 10.1038/430742a.
Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. 2008. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci 105: 10444-10449. DOI: 10.1073/pnas.0708049105.
Slavova C, Schrameyer V, Reusa M, Ralph PJ, Hill R, Bücheld C, Larkumb AWD, Holzwarth, AR. 2016. “Super-quenching” state protects Symbiodinium from thermal stress - Implications for coral bleaching. Biochim Biophys Acta 1857: 840-847. DOI: 10.1016/j.bbabio.2016.02.002.
Soo P, Todd PA. 2014. The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae). Mar Biol 161 (12): 2699-2717. DOI: 10.1007/s00227-014-2545-0.
Strychar KB, Sammarco PW. 2009. Exaptation in corals to high seawater temperatures: Low concentrations of apoptotic and necrotic cells in host coral tissue under bleaching conditions. J Exp Mar Biol Ecol 369: 31-42. DOI: 10.1016/j.jembe.2008.10.021.
Talmage SC, Gobler CJ. 2011. Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves. PLoS ONE 6 (10): e26941. DOI: 10.1371/journal.pone.0026941.
Tchernov D, Gorbunov MY, De Vargas C, Narayan YS, Milligan AJ Häggblom M. 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci 101: 13531-13535. DOI: 10.1073/pnas.0402907101.
Trench RK, Wethey DS, Porter JW. 1981. Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biol Bull 161 (1): 180-198. DOI: 10.2307/1541117.
True JD. 2012. Salinity as a structuring force for near shore coral communities; Proceedings of the 12th International Coral Reef Symposium. Cains, 9-13 July 2012. [Australia]
Ward S, Harrison P, Hoegh-Guldberg O. 2002. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proc 9th Intl Coral Reef Symp 2: 1123-1128.
Watson SA, Neo ML. 2021. Conserving threatened species during rapid environmental change: Using biological responses to inform management strategies of giant clams. Conserv Physiol 9 (1): coab082. DOI:10.1093/conphys/coab082.
Winter A, Appeldoorn RS, Bruckner A, Williams EH, Goenaga C. 1998. Sea surface temperatures and coral reef bleaching off La Parguera, Puerto Rico (northeastern Caribbean Sea). Coral Reefs 17: 377-382. DOI: 10.1007/s003380050143.