Variations in photo-physiological responses of shaded and non-shaded mangrove, Rhizophora mucronata tree parts from Mauritius Island, western Indian Ocean




Abstract. Kaullysing D, Jogee SY, Mundil SP, Soondur M, Gopeechund A, Ricot M, Jeetun S, Chinta T, Chockalingum J, Mungur D, Kowal B, Kristnama L, Gunness V, Balgobin A, Fakun ZR, Munbodhe V, Nohur MB, Ramdhun D, Ramsurrun LK, Rase S, Seetohul TK, Mattan-Moorgawa S, Ramah S, Bhagooli R. 2023. Variations in photo-physiological responses of shaded and non-shaded mangrove, Rhizophora mucronata tree parts from Mauritius Island, western Indian Ocean. Indo Pac J Ocean Life 7: 71-78. This study assessed and compared the photo-physiological responses of the tree parts of juvenile and adult mangrove, Rhizophora mucronata, under shaded and non-shaded conditions in the northern coast of Mauritius Island. Chlorophyll a fluorescence of mature (dark) leaves, young and mature propagules, lichen, buds, and sepal of adult R. mucronata trees, and of mature and young (pale) leaves of juveniles under natural shaded and non-shaded conditions was measured using a field-portable Diving Pulse-Amplitude-Modulated (D-PAM) fluorometer. Commonly used chlorophyll fluorescence parameters such as Fv/Fm, rETRmax, NPQmax were calculated. The tree parts of adult and juvenile R. mucronata showed considerable variations in their photosynthetic responses. Fv/Fm of adult tree leaves was 30% higher in shaded condition as compared to non-shaded condition. The combined effect of mangrove tree parts and conditions (shaded; non-shaded) resulted in significant differences in mean values of Fv/Fm (three-way ANOVA, p<0.001). Leaves of adult trees had 52% higher rETRmax in shaded condition. While a significant difference (p<0.001) was noted in the mean rETRmax values of various tree parts, the shaded and non-shaded conditions did not have any significant effect on rETRmax (p>0.05). Non-shaded parts of R. mucronata, including the leaves, exhibited higher NPQmax values as compared to shaded conditions. Mean NPQmax varied significantly among mangrove parts (p<0.001), between tree stage (p<0.001) and between conditions (p<0.05). These findings revealed differences in the photosynthetic activities of various mangrove parts of juvenile and adult trees under shaded and non-shaded conditions, a first attempt for the tropical island of Mauritius.



Andrews TJ, Clough BF, Muller GJ. 1984. Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in north Queensland. In: Teas HJ (eds). Physiology and Management of Mangroves. Hague, The Netherlands. DOI: 10.1007/978-94-009-6572-0_2.
Appadoo C. 2003. Status of mangroves in Mauritius. J Coast Dev 7: 1-4.
Armance M, Mattan-Moorgawa S, Bhagooli R. 2019. Micro-phytoplankton density and diversity at a pilot oyster culture barachois site of Mauritius Island. Ocean Life 3 (1): 1-12 DOI: 10.13057/oceanlife/o030101.
Attiwill PM, Clough PM. 2018. Carbon dioxide and water vapour exchange in the white mangrove. Photosynthetica 14: 40-47.
Basak UC, Das AB, Das P. 1996. Chlorophylls, carotenoids, proteins and secondary metabolites in leaves of 14 species of mangrove. Bull Mar Sci 58: 654-659.
Bhagooli R, Kaullysing D. 2019. Seas of Mauritius. In Sheppard C (eds). World Seas, an Environmental Evaluation 2nd ed. Vol. II: The Indian Ocean to the Pacific. Academic Press. DOI: 10.1016/B978-0-08-100853-9.00016-6.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, Soondur M, Pilly SS, Beesoo R, Wijayawanti DP, Bachok ZB, Monrás VC, Casareto BE, Suzuki Y, Baker AC. 2021b. Chlorophyll fluorescence - a tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Mar Pollut Bull 165: 112059. DOI: 10.1016/j.marpolbul.2021.112059.
Bhagooli R, Soondur M, Ramah S, Gopeechund A, Kaullysing D. 2021a. Variable photo-physiological performance of macroalgae and seagrasses from Saya de Malha and Nazareth Banks, Mascarene Plateau. SI - Studies on the Mascarene Plateau, Western Indian Ocean. J Mar Sci 2: 95-108. DOI: 10.4314/wiojms.si2021.2.7.
Björkman O, Demmig B, Andrews TJ. 1988 Mangrove photosynthesis: Response to high-irradiance stress. Funct Plant Biol 15: 43-61. DOI: 10.1071/PP9880043.
Bosire J, Mangora M, Bandeira S, Rajkaran A, Ratsimbazafy R, Appadoo C, Kairo J. 2016. Mangroves of the Western Indian Ocean: Status and Management. WIOMSA, Zanzibar Town.
Carter DR, Cheeseman JM, Clough BF, Lovelock CE, Sim RG, Ong JE. 1990. Photosynthetic characteristics of the mangrove, Bruguiera parviflora (Roxb.) Wright and Arn., under natural conditions. In: Baltscheffsky M (eds). Current Research in Photosynthesis. Kluwer, Dordrecht, The Netherlands. DOI: 10.1007/978-94-009-0511-5_823.
Cheeseman JM, Clough BF, Carter DR, Lovelock CE, Eong OJ, Sim RG. 1991. The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves. Photosynth Res 29: 11-22. DOI: 10.1007/BF00035202.
Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF. 1997. Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20: 579-588. DOI: 10.1111/j.1365-3040.1997.00096.x.
Cheeseman JM. 1994. Depressions of photosynthesis in mangrove canopies. In: Baker NR, Bowyer JR (eds). Photoinhibition of Photosynthesis - From Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, UK.
Chen CI, Lin KH, Huang MY, Wong SL, Liao TS, Chen MN, Weng JH, Hsueh ML, Lai YH, Wang CW. 2022. Photosynthesis in response to different salinities and immersions of two native Rhizophoraceae mangroves. Cells 11: 3054. DOI: 10.3390/ cells11193054.
Clarisse JO, Appadoo C, Boojhawon R. 2016. Spatial distribution of Rhizophora mucronata and Bruguiera gymnorrhiza mangroves using kriging technique: A contribution to understanding forest structure in South-East Coast of Mauritius (Indian Ocean). Univ Mauritius Res J 22: 458-483.
Dittmann S, Mosley L, Stangoulis J, Nguyen VL, Beaumont K, Dang T, Guan H, Gutierrez-Jurado K, Lam-Gordillo O and McGrath A. 2022. Effects of extreme salinity stress on a temperate mangrove ecosystem. Front For Glob Change 5: 859283. DOI: 10.3389/ffgc.2022.859283.
Donato D, Kauffman J, Murdiyarso D, Kurniato S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4: 293-297. DOI: 10.1038/ngeo1123.
Dörken VM, Lepetit B. 2018. Morpho?anatomical and physiological differences between sun and shade leaves in Abies alba MILL. (Pinaceae, Coniferales): A combined approach. Plant Cell Environ 41: 1683-1697. DOI: 10.1111/pce.13213.
Duke NC, Watkinson AJ. 2002. Chlorophyll-deficient propagules of Avicennia marina and apparent longer term deterioration of mangrove fitness in oil-polluted sediments. Mar Pollut Bull 44: 1269-1276. DOI: 10.1016/S0025-326X(02)00221-7.
Esteban R, Fernández-Marín B, Hernandez A, Jiménez ET, León A, García-Mauriño S, Silva CD, Dolmus JR, Dolmus CM, Molina MJ, Gutierrez NN, Loaisiga MI, Brito P, García-Plazaola JI. 2013. Salt crystal deposition as a reversible mechanism to enhance photoprotection in black mangrove. Trees 27: 229-237. DOI: 10.1007/s00468-012-0790-8.
Falqueto AR, Silva DM, Fontes RV. 2008. Photosynthetic performance of mangroves Rhizophora mangle and Laguncularia racemosa under field conditions. Revista Árvore 32: 577-582. DOI: 10.1590/S0100-67622008000300018.
FAO, UNEP. 2020. The State of the World’s Forests 2020. Forests, Biodiversity and People, Rome. DOI: 10.4060/ca8642en.
Genty B, Harbinson J, Briantais JM, Baker NR. 1990. The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25: 249-257. DOI: 10.1007/BF00033166.
Goldberg L, Lagomasino D, Nathan T, Fatoyinbo T. 2020. Global declines in human-driven mangrove loss. Glob Change Biol 26: 5844-5855. DOI: 10.1111/gcb.15275.
Kathiresan K, Bingham BL. 2001. Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40: 84-254. DOI: 10.1016/S0065-2881(01)40003-4.
Kitao M, Utsugi H, Kuramoto S, Tabuchi R. 2003. Light-dependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island, Micronesia. Physiol Plantarum 117: 376-382. DOI: 10.1034/j.1399-3054.2003.00042.x.
Komiyama A, Ong JE, Poungparn S. 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquat Bot 89: 128-137. DOI: 10.1016/j.aquabot.2007.12.006.
Monga E, Mangora MM, Trettin CC. 2022. Impact of mangrove planting on forest biomass carbon and other structural attributes in the Rufiji Delta, Tanzania. Glob Ecol Conserv 35: e02100. DOI: 10.1016/j.gecco.2022.e02100.
Murchie EH, Niyogi KK. 2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155: 86-92. DOI: 10.1104/pp.110.168831.
Naidoo G, Hiralal T, Naidoo Y. 2014. Ecophysiological responses of the mangrove Avicennia marina to trace metal contamination. Flora 209: 63-72. DOI: 10.1016/j.flora.2013.10.003.
Naidoo G, Tuffers AV, von Willert DJ. 2001. Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. Trees 16: 140-146. DOI: 10.1007/s00468-001-0134-6.
Naidoo G, Von Willert DJ. 1995. Diurnal gas exchange characteristics and water use efficiency of three salt-secreting mangroves at low and high salinities. Hydrobiologia 295: 13-22. DOI: 10.1007/978-94-011-0289-6_3.
Osland MJ, Feher LC, Spivak AC, Nestlerode JA, Almario AE, Cormier N, From AS, Krauss KW, Russell MJ, Alvarez F, Dantin DD, Harvey JE, Stagg CL. 2020. Rapid peat development beneath created, maturing mangrove forests: Ecosystem changes across a 25-yr chronosequence. Ecol Appl 30: e02085. DOI: 10.1002/eap.2085.
Panda D, Dash PK, Dhal NK, Rout NC. 2006. Chlorophyll fluorescence parameters and chlorophyll content in mangrove species grown in different salinity. Gen Appl Plant Physiol 32: 175-180.
Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Nam VN, Ong JE, Primavera JH, Salmo III SG, Sanciangco JC, Sukardjo S, Wang Y, JWH Yong. 2010. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 5: e10095. DOI: 10.1371/journal.pone.0010095.
Quadros A, Zimmer M. 2017. Dataset of "true mangroves" plant species traits. Biodivers Data J 5: e22089. DOI: 10.3897/BDJ.5.e22089.
Rovai AS, Barufi JB, Pagliosa PR, Scherner F, Torres MA, Horta PA, Simonassi JC, Quadros DPC, Borges DLG, Soriano-Sierra EJ. 2013. Photosynthetic performance of restored and natural mangroves under different environmental constraints. Environ Pollut 181: 233e241. DOI: 10.1016/j.envpol.2013.06.023.
Sadally SB, Taleb-Hossenkhan N, Bhagooli R. 2016. Microalgal distribution, diversity and photo-physiological performance across five tropical ecosystems around Mauritius Island. West Indian Ocean J Mar Sci 15 (1): 49-68.
Sanderman J, Hengl T, Fiske G, Solvik K, Adame MF, Benson L, Bukoski JJ, Carnell P, Cifuentes-Jara M, Donato D, Duncan C, Eid EM, Ermgassen PZ, Lewis CJE, Macreadie PI, Glass L, Gress S, Jardine SL, Jones TG, Nsombo EN, Rahman MM, Sanders CJ, Spalding M, Landis E. 2018. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ Res Lett 13: 055002. DOI: 10.1088/1748-9326/aabe1c.
Saveyn A, Steppe K, Ubierna N, Dawson TE. 2010. Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant Cell Environ 33: 1949-1958. DOI: 10.1111/j.1365-3040.2010.02197.x.
Schmitz N, Egerton JJG, Lovelock CE, Ball MC. 2012. Light?dependent maintenance of hydraulic function in mangrove branches: Do xylary chloroplasts play a role in embolism repair? New Phytol 195: 40-46. DOI: 10.1111/j.1469-8137.2012.04187.x.
Soondur M, Kaullysing D, Boojhawon R, Lowe R, Casareto B, Yoshimi S, Bhagooli R. 2020. Diel variations in density and diversity of micro-phytoplankton community in and around a barachois-based oyster culture farm. J Sustain Sci Manag 15: 2-17. DOI: 10.46754/jssm.2020.06.002.
Soondur M, Ramah S, Boojhawon R, Kaullysing D, Bhagooli R. 2021. Spatial distribution of surface chlorophyll a and micro-phytoplankton density and diversity around two islands and at two banks of the Mascarene region. West Indian Ocean J Mar Sci 2: 33-51. DOI: 10.4314/wiojms.si2021.2.3
Spalding MD, Leal M (eds). 2021. The State of the World’s Mangroves. Global Mangrove Alliance.
Suello RH, Hernandez SL, Bouillon S, Belliard JP, Dominguez-Granda L, Van de Broek M, Moncayo AMR, Veliz JR, Ramirez KP, Govers G, Temmerman S. 2022. Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient. Biogeosciences 19: 1571-1585. DOI: 10.5194/bg-19-1571-2022.
Tang W, Zheng M, Zhao X, Shi J, Yang J, Trettin C. 2018. Big geospatial data analytics for global mangrove biomass and carbon estimation. Sustainability 10 (2): 472. DOI: 10.3390/su10020472.
Tomlinson PB. 2016. The Botany of Mangroves. 2. Cambridge University Press, Cambridge. DOI: 10.1017/CBO9781139946575.
Wang CW, Wong SL, Liao TS, Weng JH, Chen MN, Huang MY, Chen CI. 2022. Photosynthesis in response to salinity and submergence in two Rhizophoraceae mangroves adapted to different tidal elevations. Tree Physiol 42: 1016-1028. DOI: 10.1093/treephys/tpab167.