Isolation of microcellulose from peanut shell (Arachis hypogaea) and its potential application

##plugins.themes.bootstrap3.article.main##

ELYNA WAHYU TRISNAWATI
EDI PRAMONO
VENTY SURYANTI

Abstract

Abstract. Trisnawati EW, Pramono E, Suryanti V. 2023. Isolation of microcellulose from peanut shell (Arachis hypogaea L.) and its potential application. Pros Sem Nas Masy Biodiv Indon 9: 137-142. Peanut seeds are widely used in the food industry as an ingredient for making peanut butter, while peanut shells have the potential to become waste that has no economic value. Peanut skin has a high enough cellulose content, so this study isolated microcellulose from peanut shells. Microcellulose isolation was conducted using the alkalization method with NaOH and bleaching with NaOCl. Peanut shell microcellulose was confirmed using SEM (Scanning Electron Microscope), FT-IR (Fourier Transform-Infra Red), TGA (Thermogravimetric Analysis), and DSC (Differential Scanning Calorimetry). SEM analysis showed the morphology of microcellulose fibers with a flat shape, close together, rough surface, and measures 7.77 µm. FT-IR analysis showed the successful isolation of microcellulose with the absence of hemicellulose and lignin peaks. TGA and DSC analysis showed three stages of degradation with a microcellulose degradation temperature at 195°C and a melting point at 120°C. These results indicate that microcellulose was successfully isolated from peanut shells and has the potential as a starting material for membrane fillers, membrane matrices, composites, adsorbents, hydrogels, and films for food packaging.

##plugins.themes.bootstrap3.article.details##

References
Arteaga-Ballesteros BE, Guevara-Morales A, Martín-Martínez ES, Figueroa-López U, Vieyra H. 2021. Composite of polylactic acid and microcellulose from kombucha membranes. e-Polymers 21 (1): 15-26. DOI: 10.1515/epoly-2021-0001.
Bano S, Negi YS. 2017. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157: 1041-1049. DOI: 10.1016/j.carbpol.2016.10.069.
Bodkhe S, Rajesh PSM, Kamle S, Verma V. 2014. Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. J Polym Res 21 (5): 434. DOI: 10.1007/s10965-014-0434-3.
Chuin Tan CH, Sabar S, Haafiz MKM, Garba ZN, Hussin MH. 2020. The improved adsorbent properties of microcrystalline cellulose from oil palm fronds through immobilization technique. Surf Interfaces 20: 100614. DOI: 10.1016/j.surfin.2020.100614.
Debnath B, Duarah P, Haldar D, Purkait MK. 2022. Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass. Food Packag Shelf Life 34: 100937. DOI: 10.1016/j.fpsl.2022.100937.
Duc PA, Dharanipriya P, Velmurugan BK, Shanmugavadivu M. 2019. Groundnut shell -a beneficial bio-waste. Biocatal Agric Biotechnol 20: 101206. DOI: 10.1016/j.bcab.2019.101206.
Janker-Obermeier I, Sieber V, Faulstich M, Schieder D. 2012. Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Ind Crops Prod 39: 198-203. DOI: 10.1016/j.indcrop.2012.02.022.
Kundu D, Banerjee T. 2020. Development of microcrystalline cellulose based hydrogels for the in vitro delivery of Cephalexin. Heliyon 6 (1): e03027. DOI: 10.1016/j.heliyon.2019.e03027.
Kusmartono B. 2018. Pemanfaatan kulit kacang tanah (Arachis Hypogaea L.) sebagai bahan baku pembuatan nitroselullosa. J Teknologi 11 (2): 143-149. DOI: 10.3415/jurtek.v11i2.1840. [Indonesian]
Liang Z, Li X, Li M, Hong Y. 2023. Study on the preparation and properties of jute microcrystalline cellulose membrane. Molecules 28 (4): 1783. DOI: 10.3390/molecules28041783.
Mahanta N, Leong WY, Valiyaveettil S. 2012. Isolation and characterization of cellulose-based nanofibers for nanoparticle extraction from an aqueous environment. J Mater Chem 22 (5): 1985-1993. DOI: 10.1039/C1JM15018A.
Manzato L, Rabelo LCA, de Souza SM, da Silva CG, Sanches EA, Rabelo D, Mariuba LAM, Simonsen J. 2017. New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. J Mol Struct 1143: 229-234. DOI: 10.1016/j.molstruc.2017.04.088.
Meda RS, Jain S, Singh S, Verma C, Nandi U, Maji PK. 2022. Novel Lagenaria siceraria peel waste based cellulose nanocrystals: Isolation and rationalizing H-bonding interactions. Ind Crops Prod 186: 115197. DOI: 10.1016/j.indcrop.2022.115197.
Pacheco IS, Alves AGT, Santana LC, Ribeiro EAM, Canobre SC, Amaral FA. 2022. Performance of cationic hemicelluloses arising from peanut shell residue from agroindustry in application as primary coagulant in physical-chemical treatment of dairy wastewater. J Water Process Eng 47: 102661. DOI: 10.1016/j.jwpe.2022.102661.
Pennells J, Godwin ID, Amiralian N, Martin DJ. 2020. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27: 575-593. DOI: 10.1007/s10570-019-02828-9.
Poma AB, Chwastyk M, Cieplak M. 2016. Coarse-grained model of the native cellulose I? and the transformation pathways to the I? allomorph. Cellulose 23 (3): 1573-1591. DOI: 10.1007/s10570-016-0903-4.
Punnadiyil RK, Sreejith MP, Purushothaman E. 2016. Isolation of microcrystalline and nano cellulose from peanut shells. J Chem Pharm Sci 1: 12-16.
Rasheed M, Jawaid M, Karim Z, Abdullah LC. 2020. Morphological, physiochemical and thermal properties of Microcrystalline Cellulose (MCC) extracted from bamboo fiber. Molecules 25 (12): 2824. DOI: 10.3390/molecules25122824.
Rizwan M, Gilani SR, Durrani AI, Naseem S. 2021. Cellulose extraction of Alstonia scholaris: A comparative study on efficiency of different bleaching reagents for its isolation and characterization. Intl J Biol Macromol 191: 964-972. DOI: 10.1016/j.ijbiomac.2021.09.155.
Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88 (2): 772-779. DOI: 10.1016/j.carbpol.2012.01.062.
Suryanti V, Kusumaningsih T, Safriyani D, Cahyani IS. 2023. Synthesis and characterization of cellulose ethers from screw pine (Pandanus tectorius) leaves cellulose as food additives. Intl J Technol 14 (3): 291-319. DOI: 10.14716/ijtech.v14i3.5288.
Vallejo M, Cordeiro R, Dias PAN, Moura C, Henriques M, Seabra IJ, Malça CM, Morouço P. 2021. Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava. Bioresour Bioprocess 8 (1): 25. DOI: 10.1186/s40643-021-00377-3.
Wang B, Li D. 2015. Strong and optically transparent biocomposites reinforced with cellulose nanofibers isolated from peanut shell. Compos Part A Appl Sci Manuf 79: 1-7. DOI: 10.1016/j.compositesa.2015.08.029.