Estimation of current and future distribution of Ruellia tuberosa in Java and Madura Island, Indonesia

##plugins.themes.bootstrap3.article.main##

YOUHANA ELI SANTIKA
WIAN AYU WARDHA'ADLINA
YUNIA PUTRI ANNISA ARTA
VINCENTIUS DIAZ MAHESWARA
MUHAMMAD FIRDAUS WIRAATMAJA
AHMAD DWI SETYAWAN

Abstract

Abstract. Santika YE, Wardha'adlina WA, Arta YPA, Maheswara VD, Wiraatmaja MF, Setyawan AD. 2024. Estimation of current and future distribution of Ruellia tuberosa in Java and Madura Island, Indonesia. Pros Sem Nas Masy Biodiv Indon 10: 32-44. Ruellia tuberosa L. or Blue-bell originates from Central America. This plant spreads to Southeast Asia and grows in dry, hot, tropical, and subtropical areas, fast in humid and shady areas, and 150 meters above sea level (masl). Ruellia tuberosa is identified as an invasive plant that can disrupt local ecosystems. The distribution must be known to determine priority management to reduce the impact. This study aims to determine the current distribution of R. tuberosa and its estimated future distribution in Java and Madura Island, Indonesia using Maximum Entropy (MaxEnt) software. Therefore, 21 parameters in this modeling consisted of 19 Bioclimatic Variables, Elevation, and Solar Radiation. RCP scenarios 2.6 and 8.5 were used in this study to predict the future spread of R. tuberosa. Sample points were obtained from two data sources, the Global Biodiversity Information Facility (GBIF) and direct observation. The results of distribution modeling using MaxEnt showed an AUC value of 0.959. This value indicates that the modeling results using MaxEnt have better performance than the random method. Modeling the growth distribution of R. tuberosa plants in 2030, 2050, and 2080 shows a significant decrease in the distribution of these plants from year to year because there was significant climate change in that year, which was caused by an increase in CO2 levels, which led to global climate change, thus affecting the growth of invasive plants. The main parameter that predominantly influences the spread of R. tuberosa is BIO 9 (Mean Temperature of Driest Quarter). This needs to be of concern to environmental managers, because this plant is classified as an invasive species.

##plugins.themes.bootstrap3.article.details##

References
Aitken, S. N., & Whitlock, M. C. 2013. Assisted gene flow to facilitate local adaptation to climate change. Annual review of ecology, evolution, and systematics. 44: 367-388. DOI : 10.1146/annurev-ecolsys-110512-135747
Akhirul, A., Witra, Y., Umar, I., & Erianjoni, E. 2020. The Negative Impact of Population Growth on the Environment and Efforts to Overcome It. Journal of Population and Environmental Development. 1(3): 76-84.
Amajida H, Tjahjadi P, Ari S. 2019. Antibacterial activity of ethanolic and n-hexane extracts of Ruellia tuberosa leaves against Escherichia coli and Bacillus subtilis bacteria. Asian Journal of Natural Product Biochemistry, 17(2): 69-80. DOI: 10.13057/biofar/f170203
Andriani, P., 2019. Identifikasi Tumbuhan Asing Invasif (Invasive Alien Species) Herba Di Taman Hutan Raya Pocut Meurah Intan Sebagai Media Pendukung Pembelajaran Pada Submateri Faktor Menghilangnya Keanekaragaman Hayati Di SMAN 1 Lembah Seulawah Aceh Besar (Doctoral dissertation, UIN AR-RANIRY).
Annisa C, Sasangka P, Anna S. 2022. Co-microencapsulation of Ruellia tuberosa L. and Cosmos caudatus K. Extracts for Pharmaceutical Applications. Makara Journal of Science, 26(2), 96?106. DOI: 10.7454/mss.v26i2.1334.
Arun MN, Kumar RM, Sreedevi B, Padmavathi G, Revathi P, Pathak N, Dayyala S, Venkatanna B. 2022. The Rising Threat of Invasive Alien Plant Species in Agriculture. In Resource Management in Agroecosystems. IntechOpen. DOI: 10.5772/intechopen.106742.
Asanok L, Kamyo T, Marod D. 2020. Maximum entropy modeling for the conservation of Hopea odorata in riparian forest, central Thailand. Biodiversitas 12 (10): 4663-4670. DOI: 10.13057/biodiv/d211027.
Barton, M. G., Terblanche, J. S., & Sinclair, B. J. 2019. Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change. Ecological Modelling. 394: 53-65. DOI : https://doi.org/10.1016/j.ecolmodel.2018.12.017
Backhouse D. 2014. Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. European Journal of Plant Pathology. 139: 161-173. DOI: 10.1007/s10658-013-0374-5.
Beckford, H. O., Chang, C., & Ji, H. 2023. Elemental Behavior during Weathering and Pedogenesis of Clay-Rich Red Soils Developed in Different Lithologies in Java–Madura and Sulawesi in Indonesia. Sustainability. 15(6): 1-28. DOI:https://doi.org/10.3390/su15064936
Chhetri PK, Gaddis KD, Cairns DM. 2018. Predicting the suitable habitat of treeline species in the Nepalese Himalayas under climate change. Mt Res Dev 38 (2): 153-163. DOI : 10.1659/MRD-JOURNAL-D-17-00071.1
Chothani DL, Patel MB, Mishra SH, Vaghasiya HU. 2010. Review on Ruellia tuberosa (Cracker plant). Pharmacognosy Journal. 2(12): 506-512. DOI: 10.1016/S0975-3575(10)80040-9.
De Freitas JA, Rojer AC, Nijhof BSJ, Houtepen EAT, Debrot AO. 2020. Landscape ecological vegetation map of St. Maarten (Lesser Antilles). Caribbean Research and Management of Biodiversity Foundation, Curac?ao.
Dong, S.Y., Gao, X.J., 2014. Long-term climate change: interpretation of IPCC fifth assessment report. Progressus Inquisitiones DE Mutatione Climatis. 10 (1):56–59. DOI: 10.3969/j.issn.1673-1719.2014.01.012
Dutta S, Hazra K, Ghosal S, Paria D, Hazra J, Rao MM. 2020. Morpho-Anatomical and Phytochemical Characterisation of Traditionally Used Plant Ruellia Tuberosa L. Leaves and Roots. International Journal of Pharmacognosy, 7(1), 12-22. DOI: 10.13040/IJPSR.0975-8232.IJP.7(1).12-22.
Ernakovich JG, Hopping KA, Berdanier B, Simpson RT, Kachergis EJ, Steltzer H, Wallenstein MD. 2014. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology. 20(10): 3256-3269. DOI: https://doi.org/10.1111/gcb.12568
Fran?ula N, Miljenko L, Robert Ž, Ivka K, Vesna PP, Adam V, Iva CZ. 2020. Determining Areas from Maps. Geodetski List 75(4): 365–379.
Green, S. J., & Grosholz, E. D. 2021. Functional eradication as a framework for invasive species control. Frontiers in Ecology and the Environment. 19(2): 98-107. DOI : https://doi.org/10.1002/fee.2277
Gunawan, Khoerul A, Abdul G, Raudatul H, Azmil AW, Nur H, Sakinah, Erwansyah M, Dian S, Ratna DL, Dinda T. 2023. Predicting the current potential geographical distribution of Baccaurea (B. lanceolata and B. motleyana) in South Kalimantan, Indonesia. Biodiversitas 24(2): 930-939. DOI: 10.13057/biodiv/d240232.
Hao T, Jane E, Jose J, Lahoz M, Gurutzeta GA. 2020. Testing Whether Ensemble Modelling Is Advantageous For Maximising Predictive Performance Of Species Distribution Models. Ecography 43(4): 549-558. DOI: 10.1111/ecog.04890.
Harika MNLC, Radhika P. 2019. Phytochemical Analysis of Ruellia tuberosa Tuber Ethanolic Extract Using UV-VIS, FTIR and GC-MS Techniques. International Journal of Pharmacy and Biological Sciences-IJPBS 9(1): 889-892. DOI: 10.21276/ijpbs.2019.9.1.113.
Harika M., RAdhika P. 2021. Photosynthesis and Characterization of Silver Nanoparticles From Ruellia Tuberosa (L.): Effect of Physicochemical Parameters.. Asian J Pharm Clin Res. 14(12): 31-38. DOI: 10.22159/ajpcr.2021.v14i12.42020.
Harinath P, Suryanarayana K, Sreekanth B, Ramana SV. 2019. Life history, phenology, host plant selection and utilization in the lemon pancy Junonia lemonias in the Eastern Ghats of Southern Andhra Pradesh. Science Spectrum. 4(3-4): 83-101.
Hepni, Meliani DL, Lasma E. 2021. Purple Ruellia Flower (Ruellia Simplex Wright) Ethanol Extract Lotion as Skin Moisturizer. Science Midwifery, 10(1), 132-139.
Hermawan, R., Hikmat, A., Prasetyo, L.B. and Setyawati, T., 2017. Model Sebaran Spasial dan Kesesuaian Habitat Spesies Invasif Mantangan (Merremia peltata (l.) Merr.) di Taman Nasional Bukit Barisan Selatan. Jurnal Nusa Sylva, 17(2) : 80-90. DOI : 10.31938/jns.v17i2.205
Huang Z, Yalan L, Weiqing M, Xunqiang M, Wenbin X, Haofan Y, Mengxuan H, Yidong W. 2023. Study on suitability assessment of waterbird habitats along the Bohai Rim. Ecological Indicators 150: 1-13. DOI: 10.1016/j.ecolind.2023.110229.
Hundessa, S., Li, S., Liu, D.L., Guo, J., Guo, Y., Zhang, W., Williams, G., 2018. Projecting environmental suitable areas for malaria transmission in China under climate change scenarios. Environ. Res. 162: 203-210. DOI : https://doi.org/10.1016/j.envres.2017.12.021
Kaky E, Nolan V, Alatawi A, Gilbert F. 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics. 60: 1-12. DOI: https://doi.org/10.1016/j.ecoinf.2020.101150.
Kannan NB, Ghanthi KS, Anitha J, Reena VL, Natarajan M, Lekha GS, Kanaragajan A. 2021. Standardization of Ruellia tuberosa L. with special emphasis on trichome variations. The Journal of Phytopharmacology, 10(2), 134-138. DOI: 10.31254/phyto.2021.10210.
Kathiravan S, Ragul R, Raja G, Ravichandran J. 2018. Theoretical and Experimental Studies About the Inhibitive Action of Ruellia tuberosa L on Mild Steel in HCl Medium. Journal of Bio- and Tribo-Corrosion 4(46): 1-14. DOI: 10.1007/s40735-018-0162-z.
Ko CY, Lin RH, Lo YM, Chang WC, Huang DW, Wu JSB, Chang YF, Huang WC, Shen SC. 2019. Effect of Ruellia tuberosa L. on aorta endothelial damage-associated factors in high-fat diet and streptozotocin-induced type 2 diabetic rats. Food science & nutrition. 7(11): 3742-3750. DOI: https://doi.org/10.1002/fsn3.1233.
Ko CY, Lin RH, Zeng YM, Chang WC, Huang DW, Wu JSB, Chang YF, Shen SC. 2018. Ameliorative effect of Ruellia tuberosa L. on hyperglycemia in type 2 diabetes mellitus and glucose uptake in mouse C2C12 myoblasts. Food science & nutrition. 6(8): 2414-2422. DOI: https://doi.org/10.1002/fsn3.840.
Matyukhina, D. S., Miquelle, D. G., Murzin, A. A., Pikunov, D. G., Fomenko, P. V., Aramilev, V. V., ... & Marino, J. 2014. Assessing the influence of environmental parameters on Amur Tiger distribution in the Russian Far East Using a MaxEnt modeling approach. Achievements in the Life Sciences. 8(2): 95-100. DOI : https://doi.org/10.1016/j.als.2015.01.002
Merow C, Smith MJ, Silander JA. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography. 36(10): 1058-1069. DOI: 10.1111/j.1600-0587.2013.07872.x
Mukarromah, M., Hayati, A. and Zayadi, H., 2020. Analisis Keanekaragaman Tumbuhan Invasif Di Kawasan Hutan Pantai Balekambang Desa Srigonco Kecamatan Bantur Kabupaten Malang. Jurnal Ilmiah Biosaintropis (Bioscience-Tropic), 6(1) : 46-53. DOI : https://doi.org/10.33474/e-jbst.v6i1.296
Muda, K. T., & Nur, M. 2020. Pale environmental reconstruction on Toroan residential site in Madura Island: Phytolith-based analysis. In IOP Conference Series: Earth and Environmental Science. 575(1) : 1-9. DOI:10.1088/1755-1315/575/1/012219
Muis, N. 2023. Impact of Acacia nilotica invasion on understory plant composition in the Bekol Savana of Baluran National Park. BIOMA: Journal of Biology and Its Learning. 5(1):126-136.
Muttaqin LA, Murti SH, Susilo B. 2019. MaxEnt (Maximum Entropy) model for predicting prehistoric cave sites in Karst area of Gunung Sewu, Gunung Kidul, Yogyakarta. Sixth Geoinformation Science Symposium. 11311: 87-95. DOI:10.1117/12.2543522.
Orapa, W. 2017. Impact and management of invasive alien plants in Pacific Island communities. In Invasive alien plants: impacts on development and options for management (pp. 73-108). Wallingford UK: CABI.
PHILLIPS, S. J. & DUDÍK, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175. DOI : 10.1111/j.0906-7590.2008.5203.x
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modelling of species geographic distributions. Ecol Model 190: 231- 259. DOI : 10.1016/j.ecolmodel.2005.03.026
Putri, A., Kusrini, M.D. and Prasetyo, L.B., 2019. Pemodelan Kesesuaian Habitat Katak Serasah (Leptobrachium Hasseltii Tschudi 1838) dengan Sistem Informasi Geografis di Pulau Jawa. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 10(1) : 12-24. DOI : https://doi.org/10.29244/jpsl.10.1.12-24
Putri LA, Puspita MS, Hermin S, Akhmad S, Erwin S. Determination of Total Ammonia Nitrogen by Gas-Diffusion Flow Injection Analysis (GD-FIA)-Spectrophotometry using Minnieroot Flower (Ruellia tuberosa) as Natural Reagent. Makara Journal of Science, 26(4): 263?272. DOI : 10.7454/mss.v26i4.1344
Rahmadani, R. S. Y., Alponsina, A., & Maidelizaa, T. 2021. Anatomical and energetic characteristics of wood from three invasive plants. J. Ris. Ind. Has. Forest. 13(1):1-14.
Rahmi, A. N., Sutjiatmo, A. B., & Vikasari, S. N. (2015). Efek hipoglikemik ekstrak air daun kencana ungu.Kartika: Jurnal Ilmiah Farmasi,2(2), 38-41
Safitri A, Anna R, Istoria R, Cindy AE, Zulfatul M, Resti R. 2019. Phytochemicals screening and antioxidant activity of hydroethanolic extracts of Ruellia tuberosa L. IOP Conference Series: Materials Science and Engineering, 509(1), 1-8. DOI: 10.1088/1757-899X/509/1/012017.
Safitri A, Sutrisno, Roosdiana A, Evindasari CA. 2018. Hypoglycaemic activity of hydroethanolic root extracts of Ruellia tuberosa L in diabetic rats. IOP Conference Series: Journal of Physics: Conference Series, 1146(1), 1-6. DOI: 10.1088/1742-6596/1146/1/012020.
Saharjo BH, Nurhayati AD. 2006. Domination and composition structure change at hemic peat natural regeneration following burning; a case study in Pelalawan, Riau Province. Biodiversitas 7: 154-158.
Seerangaraj V, Selvam S, Sripriya NS, Jaya GTN, Pannerselvam B, Fahad AAM, Muthiah S, Palanisamy S, Arivalagan P. 2021. Cytotoxic effects of silver nanoparticles on Ruellia tuberosa: Photocatalytic degradation properties against crystal violet and coomassie brilliant blue. Journal of Environmental Chemical Engineering, 9(2), 1-9. DOI: 10.1016/j.jece.2021.105088.
Setiawan, E., 2009. Kajian hubungan unsur iklim terhadap produktivitas cabe jamu (Piper retrofractum Vahl) di Kabupaten Sumenep. Agrovigor: Jurnal Agroekoteknologi, 2(1) : 1-7. DOI : 10.21107/agrovigor.v2i1.234
Sharma A, Kumar A, Singh AK, Singh H, Kumar KJ, Kumar P. 2023. Phytochemical Profiling and Pharmacological Evaluation of Leaf Extracts of Ruellia tuberosa L.: An In Vitro and In Silico Approach. Chemistry & Biodiversity. 20(9). DOI:https://doi.org/10.1002/cbdv.202300495.
Singh S, Neeraj S, Deenanath J. 2023. A Critical Review On Ruellia Tuberosa, Saccharum Benghalense And Dichanthium Annulatum With Huge Availability In 'Middle Ganga Segment'. Journal of Pharmaceutical Negative Results 14(1): 748-754. DOI: 10.47750/pnr.2023.14.S01.103.
Stalin N, Swamy PS. 2015. Prediction of suitable habitats for Syzygium caryophyllatum, an endangered medicinal tree by using species distribution modelling for conservation planning. Exp Biol 5 (11): 12- 19
Suadnyani, D. P. N., Muliana, I. G. N. A., Sumertayasa, K., & Dwipayana, A. D. (2023). ADAPTATION TO GLOBAL CLIMATE CHANGE TO THE IMPACT OF Climate Change In Land Transportation Through A Mitigation Approach. FSTPT Periodicals, 1(3), 687-696.
Susanti, T., Suraida, S. and Febriana, H., 2013. Keanekaragaman Tumbuhan invasif di kawasan taman hutan kenali kota jambi. Prosiding SEMIRATA 2013, 1(1).
Susilo, Farhan M. 2023. Metabolites Profiling and Biological Activities of Volatile Compounds of Ruellia tuberosa L. Leaves by GC-MS. Journal of Population Therapeutics & Clinical Pharmacology, 30(3), 690–698. DOI: 10.47750/jptcp.2023.30.03.071.
Tian T, Jiefu Y, Ming L, Tong Z. 2020. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure. Aging 12(24): 26221-26235. DOI: 10.18632/aging.202405.
Thapa, S., Chitale, V., Rijal, S. J., Bisht, N., and Shrestha, B. B. 2018. Understanding the Dynamics in Distribution of Invasive Alien Plant Species under Predicted Climate Change in Western Himalaya. PLoS ONE 13(4): 1–16. DOI : 10.1371/journal.pone.0195752
Tjitrosoedirdjo S, Tjitrosoedirdjo SS, Setyawati T. 2016. Tumbuhan Invasif dan Pendekatan Pengelolaanya. SEAMEO BIOTROP, Bogor.
Tram TM, Quach PN. 2022. Investigation of factors in improving Agrobacterium-mediated gene transfer in Ruellia tuberosa L. and evaluation of ?-glucosidase inhibitory activity in established hairy roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 50(3): 1-14. DOI: 10.15835/nbha50312588.
Wan, G. Z., Wang, L., Jin, L., & Chen, J. 2021. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model. Industrial Crops and Products. 170:1-10. DOI:10.1016/j.indcrop.2021.113783
Wati SS, Anisatu ZW. 2023. Kencana Ungu (Ruellia Tuberosa L.): Botani, Fitokimia dan Pemanfaatanya di Indonesia. Jurnal Indobiosains, 5(1), 33-42. DOI: 10.31851/indobiosains.v5i1.9742
Wei, B., Wang, R., Hou, K., Wang, X., Wu, W., 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 16:1-12. DOI : https://doi.org/10.1016/j.gecco.2018.e00477
Wei J, Kai H, Yunyun L, Jiufeng W. 2020. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Prot. 137: 105268.
West, A.M., Kumar, S., Brown, C.S., Stohlgren, T.J. and Bromberg, J., 2016. Field validation of an invasive species Maxent model. Ecological informatics, 36 : 126-134. DOI : 10.1016/j.ecoinf.2016.11.001
Wiese, D., Escalante, A. A., Murphy, H., Henry, K. A., & Gutierrez-Velez, V. H. 2019. Integrating environmental and neighborhood factors in MaxEnt modeling to predict species distributions: A case study of Aedes albopictus in southeastern Pennsylvania. PLoS One. 14(10) : 1-23. DOI : https://doi.org/10.1371/journal.pone.0223821
WAHYUNI, I., 2016. Distribution Of Invasive Plant Species And Recommendation For Management Actions At Bukit Duabelas, Jambi, Sumatra. Bogor: MSc thesis, Bogor Agricultural University, p.45.
Wati, S.S. and Wakhidah, A.Z., 2023. Kencana Ungu (Ruellia tuberosa L.): Botani, Fitokimia Dan Pemanfaatannya Di Indonesia. Indobiosains, 5(1), : 33-42. DOI : https://doi.org/10.31851/indobiosains.v5i1.9742
Wulandari A, Tamam MB. 2021. Arthropod Daily Visits to Zinnia elegans and Ruellia tuberosa in Megaluh District. AGARICUS: Advances Agriculture Science & Farming. 1(1): 14-21.
Xu, D., Zhuo, Z., Wang, R., Ye, M., & Pu, B. 2019. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation. 19 : 1-9. DOI : https://doi.org/10.1016/j.gecco.2019.e00691
Yiwen, Z., Low, B. W., & Yeo, D. C. (2016). Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecological Modelling, 341, 5-13.
Zeng, J., Li, C., Liu, J., Li, Y., Hu, Z., He, M., ... & Yan, H. 2021. Ecological assessment of current and future Pogostemon cablin Benth. potential planting regions in China based on MaxEnt and ArcGIS models. Journal of Applied Research on Medicinal and Aromatic Plants. 24:1-9. DOI : https://doi.org/10.1016/j.jarmap.2021.100308
Zhang, H., Song, J., Zhao, H., Li, M., & Han, W. 2021. Predicting the distribution of the invasive species Leptocybe invasa: Combining MaxEnt and Geodetector models. Insects. 12(2):92. DOI : https://doi.org/10.3390/insects12020092
Zhang, K., Yao, L., Meng, J., Tao, J., 2018. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment. 634: 1326–1334. DOI : https://doi.org/10.1016/j.scitotenv.2018.04.112
Zhang Q, Xiangbao S, Xiaolong J, Tingting F, Xiaocui L, Wende Y. 2023. MaxEnt Modeling for Predicting Suitable Habitat for Endangered Tree Keteleeria davidiana (Pinaceae) in China. Forests 14(2): 1-15. DOI: 10.3390/f14020394.
Zhao, Y., Zhao, M., Zhang, L., Wang, C., & Xu, Y. (2021). Predicting possible distribution of tea (Camellia sinensis L.) under climate change scenarios using MaxEnt model in China. Agriculture, 11(11) : 1-18. DOI : 10.3390/agriculture11111122