Hexavalent chromium [Cr(VI)] tolerance and reduction activity of Synechococcus sp. and Synechocystis sp. isolated in West and South Bay of Laguna de Bay, Philippines

##plugins.themes.bootstrap3.article.main##

ERICKA CRISTINA O. PUJALTE
KRISTA DENISE B. POSADAS
TRISHA C. MORALES
AIMEE CAYE G. CHANG

Abstract

Abstract. Pujalte ECO, Posadas KDB, Morales TC, Chang ACG. 2024. Hexavalent chromium [Cr(VI)] tolerance and reduction activity of Synechococcus sp. and Synechocystis sp. isolated in West and South Bay of Laguna de Bay, Philippines. Asian J Trop Biotechnol 21: 1-9. Cyanobacteria are prevalent in terrestrial and aquatic ecosystems which can tolerate stress caused by heavy metals. In the Philippines, various anthropogenic activities have contributed to the heavy metal contamination in water systems. Laguna de Bay is the largest inland body of water in the Philippines that functions as a multipurpose lake; however, heavy metal contamination such as hexavalent chromium [Cr(VI)] has progressed through the years due to various anthropogenic activities. This study evaluated the capability of cyanobacterial strains isolated from Laguna de Bay to tolerate and reduce varying concentrations of Cr(VI) using different parameters. Cyanobacterial isolates from Tadlac and Jamboree Lake were subjected to tolerance assay in varying Cr(VI) concentrations, followed by the reduction assay utilizing 1,5-Diphenylcarbazide (1,5-DPCZ) at OD540. Through morphological characterization, two genera were identified: Synechococcus sp. from West Bay and Synechocystis sp. from South Bay. This study revealed that both isolates could tolerate and reduce high Cr(VI) levels within optimum pH of 7 and 8, respectively. The data acquired from the tolerance assay showed that a Cr(VI) concentration of 1000 mg/L still permitted the growth of the two cyanobacteria genera. Percentage reduction of the isolates at their respective optimal pH showed variation wherein Synechococcus sp. at pH 7 exhibited a 58% Cr(VI) average reduction compared to Synechocystis sp. at pH 8, which then exhibited a 66% Cr(VI) average reduction. The present study's findings indicate the potential of the two indigenous cyanobacteria in the bioremediation of Cr(VI) in Laguna de Bay.

##plugins.themes.bootstrap3.article.details##

References
Abed RMM, Dobretsov S, Sudesh K. 2009. Applications of cyanobacteria in biotechnology. J Appl Microbiol 106 (1): 1-12. DOI: 10.1111/j.1365-2672.2008.03918.x.
Acharya C, Joseph D, Apte SK. 2008. Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042. Bioresour Technol 100 (7): 2176-2181. DOI: 10.1016/j.biortech.2008.10.047.
Ahmad S, Pandey A, Pathak VV, Tyagi VV, Kothari R. 2020. Phycoremediation: Algae as eco friendly tools for the removal of heavy metals from wastewaters. In: Bharagava R, Saxena G (eds). Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. DOI: 10.1007/978-981-13-3426-9_3.
Alam ZF, Concepcion CKV, Abdulrahman JD, Sanchez MAS. 2019. Biomonitoring of water bodies in Metro Manila, Philippines using heavy metal analysis and erythrocyte micronucleus assay in Nile tilapia (Oreochromis niloticus). Nat Environ Pollut Technol 18 (3): 685-696.
Al-Amin A, Parvin F, Chakraborty J, Kim Y. 2021. Cyanobacteria mediated heavy metal removal: a review on mechanism, biosynthesis, and removal capability. Environ Technol Rev 10 (1): 44-57. DOI: 10.1080/21622515.2020.1869323.
Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, Al-Ghanayem AA, Alabbad AF. 2015. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci 22 (6): 795-800. DOI: 10.1016/j.sjbs.2015.06.010.
Anburaj R, Jebapriya GR, Saravanakumar K, Kathiresan K. 2020. Bioremoval of lead by mangrove-derived cyanobacteria (Synechococcus Elongatus Arkk1). In: Babu R, Nakkella AK (eds). Global Environmental Governance, Policies and Ethics Vol. 2. Immortal Publications, Vijayawada, Andhra Pradesh, India.
Bennett RM, Cordero PF, Bautista GS, Dedeles GR. 2013. Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chem Ecol 29 (4): 320-328. DOI: 10.1080/02757540.2013.770478.
Brar A, Kumar M, Vivek V, Pareek N. 2017. Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects. 3 Biotech 7 (1): 18. DOI: 10.1007/s13205-017-0600-5.
Casamatta DA, Hašler P. 2016. Blue-green algae (cyanobacteria) in rivers. In: Necchi JRO (eds). River Algae, Springer Cham. DOI: 10.1007/978-3-319-31984-1_2.
Center for Freshwater Biology. 2010. Standard Operating Procedure for Field Sampling of Cyanobacteria in Lakes. www.cfb.unh.edu/programs/CCMP/UNHCyanobacteriaProtocol2010.pdf.
Cui J, Xie Y, Sun T, Chen L, Zhang W. 2020. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. Sci Total Environ 761: 144111. DOI: 10.1016/j.scitotenv.2020.144111.
Damatac II AM, Cao EP. 2022. Identification and diversity assessment of cyanobacterial communities from some mine tailing sites in Benguet Province, Philippines using isolation-dependent and isolation-independent methods. Environ Dev Sustain 24: 1166-1187. DOI: 10.1007/s10668-021-01489-8.
De Philippis R, Colica G, Micheletti E. 2011. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92 (4): 697-708. DOI: 10.1007/s00253-011-3601-z.
De Sotto R, Monsanto RZ, Edora JL, Bautista RH, Bennett RM, Dedeles GR. 2015. Reduction of Cr(VI) using indigenous Aspergillus spp. Isolated from heavy metal contaminated sites. Mycosphere 6 (1): 52-59. DOI: 10.5943/mycosphere/6/1/6.
Dixit S, Singh DP. 2014. An evaluation of phycoremediation potential of cyanobacterium Nostoc muscorum: characterization of heavy metal removal efficiency. J Appl Phycol 26: 1331-1342. DOI: 10.1007/s10811-013-0145-x.
Fennell DE, Du S, Liu H, Häggblom MM, Liu F. 2011. Dehalogenation of polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, and brominated flame retardants, and potential as a bioremediation strategy. In: Moo-Young M (eds). Comprehensive Biotechnology Third Edition. Pergamon Press, Oxford, UK. DOI: 10.1016/b978-0-444-64046-8.00487-0.
Gabr RM, Hassan SHA, Shoreit AAM. 2008. Biosorption of lead and nickel by living and nonliving cells of Pseudomonas aeruginosa ASU 6A. Intl Biodeter Biodegr 62 (2): 195-203. DOI: 10.1016/j.ibiod.2008.01.008.
Gupta A, Ballal A. 2015. Unraveling the mechanism responsible for the contrasting tolerance of Synechocystis and Synechococcus to Cr(VI): Enzymatic and non-enzymatic antioxidants. Aquat Toxicol 164: 118-125. DOI: 10.1016/j.aquatox.2015.04.015.
Gupta A, Bhagwat SG, Sainis JK. 2013. Synechococcus elongatus PCC 7942 is more tolerant to chromate as compared to Synechocystis sp. PCC 6803. BioMetals 26 (2): 309-319. DOI: 10.1007/s10534-013-9614-6.
Gupta A, Sainis JK, Bhagwat SG, Chittela RK. 2021. Modulation of photosynthesis in Synechocystis and Synechococcus grown with chromium (VI). J Biosci 46: 1. DOI: 10.1007/s12038-020-00119-1.
Gupta VK, Rastogi A. 2008. Sorption and desorption studies of Chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154 (1-3): 347-354. DOI: 10.1016/j.jhazmat.2007.10.032.
Hameed A, Hasnain S. 2012. Isolation and molecular identification of metal resistant Synechocystis from polluted areas. Afr J Microbiol Res 6 (3): 648-652. DOI: 10.5897/AJMR11.1517.
Huertas M, López-Maury L, Giner-Lamia J, Sánchez-Riego A, Florencio F. 2014. Metals in cyanobacteria: Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4 (4): 865-886. DOI: 10.3390/life4040865.
Kalita N, Baruah P. 2023. Cyanobacteria as a potent platform for heavy metals biosorption: Uptake, responses and removal mechanisms. J Hazard Mater Adv 11: 100349. DOI: 10.1016/j.hazadv.2023.100349.
Khattar JIS, Parveen S, Singh Y, Singh DP, Gulati A. 2014. Intracellular uptake and reduction of hexavalent chromium by the cyanobacterium Synechocystis sp. PUPCCC 62. J Appl Phycol 27 (2): 827-837. DOI: 10.1007/s10811-014-0374-7.
Kirrolia A, Bishnoi NR, Singh R. 2012. Effect of shaking, incubation temperature, salinity and media composition on growth traits of green microalgae Chlorococcum sp. J Algal Biomass Util 3 (3): 46-53.
Kulal DK, Loni PC, Dcosta C, Some S, Kalambate PK. 2020. Cyanobacteria: As a promising candidate for heavy-metals removal. In: Singh PK, Kumar A, Singh VK, Shrivastava AK (eds). Advances in Cyanobacterial Biology. Academic Press, Cambridge, MA, USA. DOI: 10.1016/B978-0-12-819311-2.00019-X.
Kumar L, Bharadvaja N. 2020. Microbial remediation of heavy metals. In: Shah MP (eds). Microbial Bioremediation & Biodegradation. Springer, Singapore. DOI: 10.1007/978-981-15-1812-6_2.
Kwak HW, Kim MK, Lee JY, Yun H, Kim MH, Park YH, Lee KH. 2015. Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal. Algal Res 7: 92-99. DOI: 10.1016/j.algal.2014.12.006.
Laguna Lake Development Authority (LLDA). 2016. LLDA | Official Website. Laguna De Bay Basin Master Plan: 2016 and Beyond Towards Climate-Resilience and Sustainable Development. https://llda.gov.ph/wp-content/uploads/dox/ldbMP2016.pdf.
Mendam K, Kumar Y, Burgala N, Megavath VS, Anandas S, Rajani A, Kavitha A, Padala T, Kuthadi S. 2022. Bioremediation of hexavalent chromium by using cyanobacteria and its application of the best isotherms. J Xi’an Shiyou Univ Nat Sci Edit 65 (3): 141-152. DOI: 10.17605/OSF.IO/P4Y6E.
Miranda J, Krishnakumar G, D'Silva A. 2012. Removal of PB2+ from aqueous system by Live Oscillatoria Laete-Virens (Crouan and Crouan) gomont isolated from industrial effluents. World J Microbiol Biotechnol 28 (10): 3053-3065. DOI: 10.1007/s11274-012-1115-1.
Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead, E. 2008. Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99: 8137-8142. DOI: 10.1016/j.biortech.2008.03.073.
Munagamage T, Rathnayake IVN, Pathiratne A, Megharaj M. 2016. Sensitivity of Four Cyanobacterial Isolates from Tropical Freshwaters to Environmentally Realistic Concentrations of Cr6+, Cd2+ and Zn2+. Bull Environ Contam Toxicol 96 (6): 816-821. DOI: 10.1007/s00128-016-1809-4.
Nacorda JO, Martinez-Goss MR, Torreta NK, Merca FE. 2007. Metal resistance and removal by two strains of the green alga, Chlorella vulgaris Beijerinck, isolated from Laguna de Bay, Philippines. J Appl Phycol 19 (6): 701-710. DOI: 10.1007/s10811-007-9216-1.
Nienaber MA, Steinitz-Kannan M. 2018. A Guide to Cyanobacteria: Identification and Impact. University Press of Kentucky, Kentucky. DOI: 10.2307/j.ctv8j70z.
Ozturk S, Aslim B, Suludere Z. 2009. Evaluation of chromium(VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol 100 (23): 5588-5593. DOI: 10.1016/j.biortech.2009.06.001.
Pardo R, Herguedas M, Barrado E, Vega M. 2003. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376 (1): 26-32. DOI: 10.1007/s00216-003-1843-z.
Priyanka, Kumar C, Chatterjee A, Wenjing W, Yadav D, Singh, PK. 2020. Cyanobacteria: Potential and role for environmental remediation. In: Singh P, Kumar A, Borthakur A (eds). Abatement of Environmental Pollutants. Elsevier, Amsterdam. DOI:10.1016/b978-0-12-818095-2.00010-2.
Rai LC, Gaur JP, Kumar HD. 1981. Phycology and heavy?metal pollution. Biol Rev 56 (2): 99-151. DOI: 10.1111/j.1469-185X.1981.tb00345.x.
Raychaudhuri SS, Pramanick P, Talukder P, Basak A. 2021. Polyamines, metallothioneins, and phytochelatins—natural defense of plants to mitigate heavy metals. In: Atta-ur-Rahman (eds). Bioactive Natural Products. Elsevier, Amsterdam. DOI: 10.1016/b978-0-12-819487-4.00006-9.
Sacdal R, Montano MP, Espino MP. 2022. Heavy metals in surface waters of Laguna de Bay, Philippines: Current levels and trends. Limnology 23: 253-264. DOI: 10.1007/s10201-021-00667-x.
Schiewer S, Volesky B. 2000. Biosorption processes for heavy metal removal. In: Lovley DR (eds). Environmental Microbe-Metal Interactions. ASM Press, Washington, DC, USA. DOI: 10.1128/9781555818098.ch14.
Sen G, Sen S, Thakurta S, Chakrabarty J. 2018. Bioremediation of Cr(VI) Using Live Cyanobacteria: Experimentation and Kinetic Modeling. J Environ Eng 144 (9). DOI: 10.1061/(ASCE)EE.1943-7870.0001425.
Sharma P, Singh SP, Parakh SK Tong YW. 2022. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction, Bioengineered 13 (3): 4923-4938. DOI: 10.1080/21655979.2022.2037273.
Shukla D, Vankar P, Srivastava SK. 2012. Bioremediation of hexavalent chromium by a cyanobacterial mat. Appl Water Sci 2: 245-251. DOI: 10.1007/s13201-012-0044-3.
Tiwari S, Parihar P, Patel A, Singh R, Prasad SM. 2019. Metals in cyanobacteria: Physiological and molecular regulation. In: Mishra AK, Tiwari DN, Rai AN (eds). Cyanobacteria. Academic Press, London, UK. DOI: 10.1016/b978-0-12-814667-5.00013-1.
Tottey S, Patterson CJ, Banci L, Bertini I, Felli IC, Pavelkova A, Robinson NJ. 2012. Cyanobacterial metallochaperone inhibits deleterious side reactions of copper. Proc Natl Acad Sci 109 (1): 95-100. DOI: 10.1073/pnas.1117515109.
Vardhan KH, Kumar PS, Panda RC. 2019. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq 290: 111197. DOI: 10.1016/j.molliq.2019.111197.
Volesky B, Holan ZR. 1995. Biosorption of heavy metals. Biotechnol Prog 11 (3): 235-250. DOI: 10.1021/bp00033a001.
World Health Organization. 2017. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. www.who.int/publications/i/item/9789241549950.