Purification and characterization of cellulase from May beetle (Phyllophaga errans) gut

##plugins.themes.bootstrap3.article.main##

ESTHER N. EZIMA
BUKUNOLA O. ADEGBESAN
IFABUNMI O. OSONUGA
ADEFEMI O. ADEFUYE
ADEOLA R. ADEPOJU
TAIWO H. BELLO
SAMUEL O. OLALEKAN

Abstract

Abstract. Ezima EN, Adegbesan BO, Osonuga IO, Adefuye AO, Adepoju AR, Bello TH, Olalekan SO. 2024. Purification and characterization of cellulase from May beetle (Phyllophaga errans) gut. Asian J Trop Biotechnol 21: 52-58. Cellulose constitutes a significant portion of plants' primary and secondary cell walls. Insects, traditionally believed to lack the ability to digest cellulose, have evolved distinctive strategies for cellulose degradation. May beetle (Phyllophaga errans LeConte, 1859) is herbivorous insects that feed on numerous plant species, including vegetables, maize plants, and other fresh food crops, causing a lot of damage to farm products. The ability of these beetles to thrive on plant diet may be due to the presence of highly effective cellulose digesting enzyme (cellulase) in their gut which aids the breaking down of cellulose into glucose. Therefore, this study focused on the extraction and purification of cellulase from the P. errans gut sourced from a farm in Ijebu-Ode, Ogun State, Nigeria. Following the dissection and homogenization of the beetle's guts, cellulase isolation and purification were carried out utilizing techniques such as ammonium sulfate precipitation, ion-exchange chromatography on CM-Sephadex G-200 and gel filtration using Sephacryl S-200 gel. The resulting pure cellulase from the gut of the P. errans exhibited a purification fold of 43.71 and a yield of 21.61% with a specific activity of 70.38 units/mg of protein. Characterization revealed the enzyme's native molecular weight of 24.6 kDa, Km (0.67 mM), and Vmax (192.31 mg/mL/min), with optimal activity observed at pH 9 and 70°C. The cellulase from the P. errans gut showcased distinctive characteristics that, if properly harnessed, could pave the way for practical applications in various industries, particularly in developing an efficient pesticide for pest management and environmental conservation.

##plugins.themes.bootstrap3.article.details##

References
Ademolu KO, Idowu AB. 2011. Occurrence and distribution of microflora in the gut regions of the variegated grasshopper Zonocerus variegatus (Orthoptera: Pyrgomorphidae) during development. Zool Stud 50 (4): 409-415.
Afzal M, Qureshi MZ, Khan S, Khan MI, Ikram H, Ashraf A, Qureshi NA. 2019. Production, purification and optimization of cellulase by Bacillus licheniformis HI-08 isolated from the hindgut of wood-feeding termite. Intl J Agric Biol 21: 125-134. DOI: 10.17957/IJAB/15.0872.
Atousa H, Ali M, Ahmad A, Omid M. 2017. Characterization of a bi-functional cellulase produced by a gut bacterial resident of Rosaceae branch borer beetle, Osphranteria coerulescens (Coleoptera: Cerambycidae). Intl J Biol Macromol 103: 158-164. DOI: 10.1016/j.ijbiomac.2017.05.042.
Banerjee S, Maiti TK, Roy RN. 2020. Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Ann Microbiol 70: 28. DOI: 10.1186/s13213-020-01569-6.
Barcoto MO, Rodrigues A. 2022. Lessons from insect fungiculture: From microbial ecology to plastics degradation. Front Microbial 13: 2022. DOI: 10.3389/fmicb.2022.812143.
Barzkar N, Sohail M. 2020. An overview on marine cellulolytic enzymes and their potential applications. Appl Microbiol Biotechnol 104:6873-6892. DOI: 10.1007/s00253-020-10692-y.
Bradford KM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. DOI: 10.1006/abio.1976.9999.
Busch A, Kunert G, Wielsch N, Pauchet Y. 2018. Cellulose degradation in Gastrophysa viridula (Coleoptera: Chrysomelidae): Functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. Insect Mol Biol 27 (5):633-650. DOI: 10.1111/imb.12500.
Chatterjee S, Sharma S, Prasad RK, Datta S, Dubey D, Meghvansi MK, Veer V. 2015. Cellulase enzyme based biodegradation of cellulosic materials: An overview. South SAJEB 5 (6): 271-282. DOI: 10.38150/sajeb.5(6).p271-282.
Cowan DA, Fernandez-Lafuente R. 2011. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 49 (4): 326-346. DOI: 10.1016/j.enzmictec.2011.06.023.
El-Sersy NA, Abd-Elnaby H, Abou-Elela GM, Ibrahim HA, Toukhy NM. 2010. Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber. Afr J Biotechnol 9 (8): 6355-6364. DOI: 10.5897/AJB10.677.
Ezima EN, Adeyanju MM, Odufuwa KT, Aremu TA, Fagbohunka BS. 2014. Biodegradation of wastes using cellulase from the termite, Amitermes eveuncifer (Silverstri) Workers: A clue to the application of termite'’s cellulase in waste management. Sci Focus 19 (2): 93-98.
Fagbohunka BS, Ezima EN, Okonji RE, Adegbesan BO, Itakorede BO. 2021. Biodegradation of wastes using cellulase from termite, Amitermes eveuncifer (Silverstri) Soldier: A clue to the application of termites cellulase in waste management. FJPAS 6 (2): 10-19.
Fagbohunka BS, Okonji RE, Adenike AZ. 2017. Purification and characterization of cellulase from termite Ametermes eveuncifer (Silverstri) Soldiers. IJB 9 (1): 1-9. DOI: 10.1186/s13213-020-01569-6.
Fouda A, Alshallash KS, Atta HM, El-Gamal MS, Bakry MM, Alawam AS, Salem SS. 2024. Synthesis, optimization, and characterization of cellulase enzyme obtained from thermotolerant Bacillus subtilis F3: An insight into cotton fabric polishing activity. J Microbiol Biotechnol 34 (1): 207-223. DOI: 10.4014/jmb.2309.09023.
Goswami K, Boruah HD, Saikia R. 2022. Purification and characterization of cellulase produced by Novosphingobium sp. Cm1 and its waste hydrolysis efficiency and bio-stoning potential. J Appl Microbiol 132 (5): 3618-3628. DOI: 10.1111/jam.15475.
Haloi DJ, Borkotoki A, Mahanta R, Haloi IH. 2012. Cellulase activity and kinetics in rice grasshopper Hieroglyphus banian (Orthoptera: acrididae). Indian J Sci Technol 5 (12): 3753-3757. DOI: 10.17485/ijst/2012/v5i12.5.
Hemati A, Nazari M, Asgari, LB, Smith DL, Astatkie T. 2022. Lignocellulosics in plant cell wall and their potential biological degradation. Folia Microbiol (Praha) 67 (5): 671-681. DOI: 10.1007/s12223-022-00974-5.
Imran M, Anwar Z, Irshad M, Asad M, Ashfaq H. 2016. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: A review. AER 4:44-55. DOI: 10.4236/aer.2016.42005.
Islam F, Roy N. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11: 445. DOI: 10.1186/s13104-018-3558-4.
Jayasekara S, Ratnayake R. 2019. Microbial cellulases: An overview and applications. In: Pascual AR, Martín EE. Cellulose. IntechOpen, London. DOI: 10.5772/intechopen.84531.
Kim D, Ku S. 2018. Bacillus cellulase molecular cloning, expression, and surface display on the outer membrane of Escherichia coli. Molecules 23: 503. DOI: 10.3390/molecules2302050.
Laemmli U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. DOI: 10.1038/227680a0.
Li X. 2021. Plant cell wall chemistry: Implications for ruminant utilization. J Appl Anim Nutr 9 (1): 31-56. DOI: 10.3920/JAAN2020.0017.
Linton SM. 2020. The structure and function of cellulase (endo-?-1,4-glucanase) and hemicellulase (?-1,3-glucanase and endo-?-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol 240: 110354. DOI: 10.1016/J.CBPB.2019.110354.
Listyaningrum NP, Sutrisno A, Wardani AK. 2018. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan. IOP Confe Ser: Earth Environ Sci 131: 012043. DOI: 10.1088/1755-1315/131/1/012043.
Malik WA, Javed S. 2021. Biochemical characterization of cellulase from Bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass. Front Bioeng Biotechnol 20 (9): 800265. DOI: 10.3389/fbioe.2021.800265.
Maswati B. 2022. Production, purification and characterization of cellulase from Cossus cossus Larvae. Al-Kimia 10: 1 DOI: 10.24252/al-kimia.v10i1.28071.
Pachauri PV, More S, Sullia SB, Deshmukh S. 2020. Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels 11 (1): 85-91. DOI: 10.1080/17597269.2017.1345357.
Padilha IQ, Carvalh LC, Dias PV, Grisi TC, Honorato-da-Silva FL, Santos SF, Araújo DA. 2015. Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. growing on sugarcane bagasse in submerged fermentation. Braz J Chem Eng 32 (1): 35-42. DOI: 10.1590/0104-6632.20150321s00003298.
Pauchet Y, Heckel DG. 2013. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc Biol Sci 280 (1763): 20131021. DOI: 10.1098/rspb.2013.1021.
Rahman MM, Inoue A, Ojima T. 2014. Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai. Front Chem 2: 60. DOI: 10.3389/fchem.2014.00060.
Rajeswari G, Jacob S, Chandel AK. 2021. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: A review. Microb Cell Fact 20: 107. DOI: 10.1186/s12934-021-01597-0.
Rehman FU, Aslam M, Tariq MI, Shaheen A, Sami AJ, Naveed NH, Batool AI. 2009. Isolation of cellulolytic activities from Tribolium castaneum (red flour beetle). Afr J Biotechnol 8 (23): 6710-6715. DOI: 10.4314/ajb.v8i23.66387.
Shelomi M, Watanabe H, Arakawa G. 2014. Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. J Insect Physiol 60: 25-30. DOI: 10.1016/j.jinsphys.2013.10.007.
Shyaula M, Regmi S, Khadka D, Poudel RC, Dhakal A, Koirala D, Sijapati J, Singh A, Maharjan J. 2023. Characterization of thermostable cellulase from Bacillus licheniformis PANG L isolated from the Himalayan soil. Intl J Microbiol 2023: 3615757. DOI: 10.1155/2023/3615757.
Soeka Y, Ilyas M. 2020. Production and characterization of cellulases derived from saprophytic fungi Penicillium bilaiae InaCC F16. IOP Conf Ser: Earth Environ Sci 591: 012015. DOI: 10.1088/1755-1315/591/1/012015.
Sreeramulu B, Thenozhiyil R, Karuppiah H, Mani M, Kannan S, Ramanathan N, Sundaram J. 2023. Predominant contribution of an endogenous cellulase (OlCel) to the cellulolysis in the digestive system of larvae of banana pseudostem weevil, Odoiporus longicollis (Coleoptera: Curculionidae). Arch Insect Biochem 114 (1): e22031. DOI: 10.1002/arch.22031.
Tokuda G. 2019. Plant cell wall degradation in insects: Recent progress on endogenous enzymes revealed by multi-omics technologies. Adv in Insect Physiol 57: 97-136. DOI: 10.1016/bs.aiip.2019.08.001.
Uddin MM, Lima SA, Hossain TJ, Kar N, Zahan Y, Olarewaju BA. 2021. Evaluation of cellulolytic endo-1,4-?-D-glucanase activity in the digestive fluid of adult phytophagous beetle Hoplasoma unicolor. Trop Life Sci Res 32 (3): 53-68. DOI: 10.21315/tlsr2021.32.3.4.
Wang K, Gao P, Geng L, Liu C, Zhang J, Shu C. 2022a. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: Refining on a tightly designed microbial fermentation production line. Microbiome 10: 90. DOI: 10.1186/s40168-022-01291-2.
Wang Q, Liu L, Zhang S, Wu H, Huang J. 2022b. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. GigaScience 11: 1–16 DOI: 10.1093/gigascience/giac059.
Watanabe H, Tokuda G. 2010. Cellulolytic systems in insects. Ann Rev Entomol 55: 609-632 DOI: 10.1146/annurev-ento-112408-085319.
Zhang J, Hou H, Chen G, Wang S, Zhang J. 2016. The isolation and functional identification on producing cellulase of Pseudomonas mendocina. Bioengineered 7 (5): 382-391. DOI: 10.1080/21655979.2016.1227143.