RP-HPLC based analysis of different polyphenols in seven species of Carex L. (Cyperaceae Juss.) from West Bengal, India




Abstract. Rajak P, Ghosh A. 2022. RP-HPLC based analysis of different polyphenols in seven species of Carex L. (Cyperaceae Juss.) from West Bengal, IndiaBiodiversitas 23: 2329-2341Carex L. is one of the important genera of the family Cyperaceae having immense ecological significance and probable therapeutic potentiality due to the presence of bioactive phytochemicals i.e. polyphenols. RP-HPLC (reversed-phase high-performance liquid chromatography) based evaluation of polyphenols concerned with the chemotaxonomy of this genus, was a fundament of reported research but the evaluation of its therapeutic possibilities are still an open field of research. In concerned with the above aim, phytochemical investigation was done by analyzing the seven species of Indian Carexto to evaluate polyphenols employing RP-HPLC. The above-mentioned analysis reveals differences in the presence as well as the amount of these marker phytochemical components compositions of each and every studied species of Carex. Total of nine polyphenols was used as standard among which, except coumaric acid, all of the polyphenols were detected in considerable amount in the studied species. Among these seven species, Carex stramentitia Boott ex Boeckeler and C. alopecuroides D. Don were found to contain a higher number of polyphenols. Gallic acid was quantified in the highest amount in C. baccans Nees. A higher amount of phloroglucinol was also detected in C. insignis Boott and C. baccans. Remarkably, biochanin A, a highly significant therapeutic phytochemical, was only observed in higher amounts in C. alopecuroides.


Abdel-Mogib M, Basaif SA, Sobahi TR. 2001. Stilbenes and a new acetophenone derivative from Scirpus holoschoenus. Molecules 6: 663-667. DOI:10.3390/60800663
Abdel-Razik AF, Nassar MI, El-Khrisy EDA, Dawidar AAM, Mabry TJ. 2005. New prenylflavans from Cyperus conglomerates. Fitoterapia 76: 762-764. DOI:10.1016/j.fitote.2005.06.007
Adomako-Bonsu A, Chan SLF, Pratten M, Fry JR. 2017. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: importance of physico-chemical characteristics. Toxicol in Vitro 40: 248–255. DOI:10.1016/j.tiv.2017.01.016
Al-Dhabi NA, Arasu MV, Park CH, Park SU. 2014. Recent studies on rosmarinic acid and its biological and pharmacological activities. EXCLI J 13: 1192-1195. DOI:10.17877/DE290R-6923
Alam M. A. 2019. Anti-hypertensive Effect of Cereal Antioxidant Ferulic Acid and Its Mechanism of Action. Front nutr 6: 121. DOI: 10.3389/fnut.2019.00121
Anwar S, Shamsi A, Shahbaaz M, Queen A, Khan P, Hasan GM, Islam A, Alajmi MF, Hussain A, Ahmad F, Hassan MI. 2020. Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Sci Rep 10(1): 10300. doi:10.1038/s41598-020-65648-z
Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. 2008. Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 33(12): 2416–2426. DOI: 10.1007/s11064-008-9697-6
Arraki K, Richard T, Badoc A, Pédrot E, Bisson J, Waffo-Téguo P. Mahjoub A, Mérillon JM, Decendit A. 2013. Isolation characterization and quantification of stilbenes from some Carex Species. Rec Nat Prod 7(4): 281-291.
Arraki K, Totoson P, Decendit A, Badoc A, Zedet A, Jolibois J, Pudlo M, Demougeot C. Girard-Thernier C. 2017. Cyperaceae species are potential sources of natural mammalian arginase inhibitors with positive effects on vascular function. J Nat Prod 80: 2432-2438. DOI:10.1021/acs.jnatprod.7b00197
Arisdason W, Lakshminarasimhan P. 12 October 2017 onward. ENVIS Centre on Floral Diversity. Central National Herbarium, Botanical Survey of India, Howrah. http://www.bsienvis.nic.in/Database/Status of Plant Diversity in India 17566.aspx
Bae J, Kim N, Shin Y, Kim S, Kim Y. 2020. Activity of catechins and their applications. Biomed Dermatol 4: 8. DOI:10.1186/s41702-020-0057-8
Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA. 2017. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50: 16–25. DOI: 10.1016/j.jnutbio.2017.08.006
Batiha GE, Beshbishy AM, IKRAM A, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM, Elewa YHA. 2020. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 9: 374. https://doi.org/10.3390/foods9030374
Barone E, Calabrese V, Mancuso C. 2008. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 10: 97–108. DOI:10.1007/s10522-008-9160-8
Bastaminejad S, Bakhtiyari S. 2021. Quercetin and its relative therapeutic potential against COVID-19: a retrospective review and prospective overview. Curr Mol Med 21(5): 385-391. DOI: 10.2174/1566524020999200918150630
Benavides A, Bassarello C, Montoro P, Vilegas W, Piacente S, Pizza C. 2007. Flavonoids and isoflavonoids from Gynerium sagittatum. Phytochemistry 68(9): 1277–1284. DOI:10.1016/j.phytochem.2007.03.007
Bezerra JJL, Pinheiro AAV. 2022. Traditional uses, phytochemistry, and anticancer potential of Cyperus rotundus L. (Cyperaceae): A systematic review. S Afr J Bot 144: 175-186. DOI: 10.1016/j.sajb.2021.08.010
Binns SE, Hudson J, Merali S, Arnason JT. 2002. Antiviral activity of characterized extracts from Echinacea spp. (Heliantheae: Asteraceae) against Herpes simplex virus (HSV-I). Planta Med 68(9): 780–783. DOI:10.1055/s-2002-34397
Bogucka-Kocka A, Szewczyk K, Janyszek M, Janyszek S, Ciesla L. 2011. RP-HPLC analysis of phenolic acids of selected Central European Carex L. (Cyperaceae) species and its implication for taxonomy. J AOAC Int 94 (01): 9-16. DOI: 10.1093/jaoac/94.1.9
Boott F. 1858. Illustration of the Genus Carex. 1. William Pamplin, London.
Brito JCM, Lima WG, Cordeiro LPB, da Cruz Nizer WS. 2021. Effectiveness of supplementation with quercetin?type flavonols for treatment of viral lower respiratory tract infections: systematic review and meta?analysis of preclinical studies. Phytother Res 35(9): 4930–4942. DOI:10.1002/ptr.7122
Broling G. 1803. Kongl. Vetenskaps Academiens Nya Handlingar. 24. Tryckte Hos Johan Pehr Lindh, Stockholm.
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, Pereira JAM, Barros L, Ferreira ICFR. 2021. Food bioactive compounds and emerging techniques for their extraction: polyphenols as a case study. Foods 10(1): 37. DOI: 10.3390/foods10010037
Chakraborty D, Gupta K, Biswas S. 2021. A mechanistic insight of phytoestrogens used for rheumatoid arthritis: an evidence-based review. Biomed Pharmacother 133: 111039. DOI:10.1016/j.biopha.2020.111039
Chen JH, Ho CT. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45(7): 2374–2378. DOI:10.1021/jf970055t
Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. 1998. Tannins and human health: a review. Crit Rev Food Sci Nutr 38(6): 421-464. DOI: 10.1080/10408699891274273
Chung TW, Moon SK, Chang YC, Ko JH., Lee YC, Cho G, Kim SH., Kim JG, Kim CH. 2004. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J 18(14): 1670–1681. DOI:10.1096/fj.04-2126com
Clarke CB. 1894. Cyperaceae. In: Hooker, J.D. (Ed.) The Flora of British India. VI. L. Reeve & Co., London.
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. 2020. Quercetin and Vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 11: 1451. DOI:10.3389/fimmu.2020.01451
Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. 2018. The role of polyphenols in human health and food systems: a mini-review. Front Nutr 5:87. DOI: 10.3389/fnut.2018.00087
Crockett SL, Wenzig EM, Kunert O, Bauer R. 2008. Anti-inflammatory phloroglucinol derivatives from Hypericum empetrifolium. Phytochem Lett 1: 37–43. DOI: 10.1016/j.phytol.2007.12.003
D’Abrosca B, Fiorentino A, Golino A, Monaco P, Oriano P, Pacifico S. 2005. Carexanes: prenyl stilbenoid derivatives from Carex distachya. Tetrahedron Lett 46(32): 5269–5272. https://doi.org/10.1016/j.tetlet.2005.06.036
Datta S., Seal T., Sinha B. K., Bhattacharjee S. 2018. RP-HPLC based evidences of rich sources of phenolics and water soluble vitamins in an annual sedge Cyperus compressus. J Phytopharmacol 7(3): 305-311. DOI: 10.31254/phyto.2018.7313
Dávid CZ, Hohmann J, Vasas A. 2021. Chemistry and pharmacology of Cyperaceae stilbenoids: a review. Molecules 26(9): 2794. DOI: 10.3390/molecules26092794
de Paiva LB, Goldbeck R, dos Santos WD, Squina FM. 2013. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci 49(3): 395–411. DOI:10.1590/s1984-82502013000300002
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. 2012. Dietary (Poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14): 1818–1892. DOI: 10.1089/ars.2012.4581
Dhanani T, Singh, R, Kumar S. 2016. Extraction optimization of gallic acid, (+)-catechin, procyanidin-B2, (–)-epicatechin, (–)-epigallocatechin gallate, and (–)-epicatechin gallate: their simultaneous identification and quantification in Saraca asoca. J Food Drug Anal 25(3): 691–698. DOI:10.1016/j.jfda.2016.08.004
Di Pierro F, Iqtadar S, Khan A, Mumtaz SU, Chaudhry MM, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P, Khan S. 2021. Potential clinical benefits of quercetin in the early stage of COVID-19: results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med14: 2807-2816. DOI: 10.2147/IJGM.S318949
Domitrovi? R, Poto?njak I, Crn?evi?-Orli? Ž, Škoda M. 2014. Nephroprotective activities of rosmarinic acid against cisplatin-induced kidney injury in mice. Food Chem Toxicol 66: 321–328. DOI:10.1016/j.fct.2014.02.002
Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A. 2019. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res 33(9): 2221-2243. DOI: 10.1002/ptr.6419
Ediger RI. 1966. A Chromatographic comparison of three species of Carex in Kansas. Trans Kans Acad Sci 69 (1): 152-156. DOI: 10.2307/3627526
Emerenciano VP, Militao JSLT, Campos CC, Romoff P, Kaplan MAC, Zambon M, Brant AJC. 2001. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem Syst Ecol 29: 947-957. DOI: 10.1016/S0305-1978(01)00033-3
Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, Vieira APO, Monteiro MC. 2019. Chemical and pharmacological aspects of Caffeic acid and its activity in Hepatocarcinoma. Front Oncol 9: 541. DOI:10.3389/fonc.2019.00541
Fachel FNS, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF. 2019. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: a novel approach to treating neurodegenerative disorders. Neurochem Int 122: 47–58. DOI:10.1016/j.neuint.2018.11.003
Fiorentino A, D’Abrosca B, Izzo A, Pacifico S, Monaco P. 2006b. Structural elucidation and bioactivity of novel secondary metabolites from Carex distachya. Tetrahedron 62(14): 3259–3265. DOI: 10.1002/chin.200631194
Fiorentino A, D’Abrosca B, Pacifico S, Cefarelli G, Uzzo P, Monaco P. 2007. Natural dibenzoxazepinones from leaves of Carex distachya: structural elucidation and radical scavenging activity. Bioorg Med Chem Lett 17: 636-639. DOI: 10.1016/j.bmcl.2006.11.002
Fiorentino A, D’Abrosca B, Pacifico S, Iacovino R, Mastellone C, Di Blasio B, Monaco P. 2006a. Distachyasin: a new antioxidant metabolite from the leaves of Carex distachya. Bioorg Med Chem Lett 16: 6096-6101. DOI: 10.1016/j.bmcl.2006.08.106
Fiorentino A, D’Abrosca B, Pacifico S, Izzo A, D’Angelo G, Monaco P. 2010. Bioactive clerodane diterpenes from roots of Carex distachya. Nat Prod Commun 5 (10): 1539-1542. DOI:10.1177/1934578X1000501004
Fiorentino A, D’Abrosca B, Pacifico S, Natale A, Monaco P. 2006c. Structures of bioactive carexanes from the roots of Carex distachya Desf. Phytochemistry 67: 971–977. DOI: 10.1016/j.phytochem.2006.04.003
Fiorentino A, Ricci A, D’Abrosca B, Pacifico S, Golino A, Letizia M, Piccolella S, Monaco P. 2008. Potential food additives from Carex distachya Roots: identification and in vitro antioxidant properties. J Agric Food Chem 56(17): 8218–8225. DOI: 10.1021/jf801603s
Garcke A. 1876. Linnaea: Ein Journal für die Botanik in ihrem ganzen Umfange. 40. Gedruckt auf Kosten des Herausgebers, Berlin.
Genaro-Mattos TC, Maurício ÂQ, Rettori D, Alonso A, Hermes-Lima M. 2015. Antioxidant activity of Caffeic Acid against iron-induced free radical generation—a chemical approach. PLoS One 10(6): e0129963. DOI:10.1371/journal.pone.0129963
Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48(10): 4581–4589. DOI: 10.1021/jf000404a
Giri BR, Bharti RR, Roy B. 2015. In vivo anthelmintic activity of Carex baccans and its active principle resveratrol against Hymenolepis diminuta. Parasitol Res 114(2): 785–788. DOI:10.1007/s00436-014-4293-y
Goetghebeur P. 1998. Cyperaceae. In: Kubitzki, K.(Ed.) The Families and Genera of Vascular Plants. Flowering Plants, Monocotyledons; Alismatanae and Commelinanae (except Gramineae). 4. Springer-Verlag, New York, USA.
Gonza?lez-Sarrias A, Gromek S, Niesen D, Seeram NP, Henry GE. 2011. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. J Agric Food Chem 59(16): 8632-8638. DOI:10.1021/jf201561e
Hanski L, Genina N, Uvell H, Malinovskaja K, Gylfe Å, Laaksonen T, Kolakovic R, Mäkilä E, Salonen J, Hirvonen J, Elofsson M, Sandler N, Vuorela PM. 2014. Inhibitory activity of the isoflavone Biochanin A on intracellular bacteria of genus Chlamydia and initial development of a buccal formulation. PloS One 9(12): e115115. DOI:10.1371/journal.pone.0115115
Harborne JB. 1971. Distribution and taxonomic significance of flavonoids in the leaves of the Cyperaceae. Phytochemistry 10: 1569-1574. DOI: 10.1016/0031-9422(71)85025-2
Hendrichs M, Oberwinkler F, Begerow D, Bauer R. 2004. Carex, subgenus Carex (Cyperaceae)?- A phylogenetic approach using ITS sequences. Plant Syst Evol 246: 89–107. DOI: 10.1007/s00606-004-0128-0
Hossan M. S., Rahman S., Bashar A. B. M. A., Jahan R., Al-Nahain A. and Rahmatullah M. 2014. Rosmarinic Acid: A review of its anticancer action. World J Pharm Pharm Sci 3(9): 57-70.
Hosseini SH, Sadeghi Z, Hosseini SV, Bussmann RW. 2022. Ethnopharmacological study of medicinal plants in Sarvabad, Kurdistan province, Iran. J Ethnopharmacol 288(3): 114985. DOI:10.1016/j.jep.2022.114985
Hsu FL, Chen YC, Cheng JT. 2000. Caffeic Acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats. Planta Medica 66(3): 228–230. DOI:10.1055/s-2000-8561
Hussain Y, Mirzaei S, Ashrafizadeh M, Zarrabi A, Hushmandi K, Khan H, Daglia M. 2021. Quercetin and its nano-scale delivery systems in prostate cancer therapy: paving the way for cancer elimination and reversing chemoresistance. Cancers 13(7): 1602. DOI: 10.3390/cancers13071602
Islam MS, Yoshimoto M, Yamakawa O. 2003. Distribution and Physiological Functions of Caffeoylquinic Acid Derivatives in Leaves of Sweetpotato Genotypes. J Food Sci 68(1): 111–116. DOI:10.1111/j.1365-2621.2003.tb14124.x
Itagaki S, Kurokawa T, Nakata C, Saito Y, Oikawa S, Kobayashi M, Hirano T, Iseki K. 2009. In vitro and in vivo antioxidant properties of ferulic acid: A comparative study with other natural oxidation inhibitors. Food Chem 114(2): 466–471. DOI:10.1016/j.foodchem.2008.09.073
Jansy Isabella Rani A, Sathibabu Uddandrao VV, Sangeethadevi G, Saravanan G, Chandrasekaran P, Sengottuvelu S, Tamilmani P, Sethumathi PP, Vadivukkarasi S. 2021. Biochanin A attenuates obesity cardiomyopathy in rats by inhibiting oxidative stress and inflammation through the Nrf-2 pathway. Arch Physiol Biochem 1-16. DOI: 10.1080/13813455.2021.1874017
Jeong SJ, Miyamoto T, Inagaki M, Kim YC, Higuchi R. 2000. Rotundines A-C, three novel sesquiterpene alkaloids from Cyperus rotundus. J Nat Prod 63: 673-675. DOI: 10.1021/np990588r
Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. 2006. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318(2): 476–483. DOI:10.1124/jpet.106.105163
Kalinova J, Vrchotova N. 2009. Level of catechin, myricetin, quercetin and isoquercitrin in Buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. J Agric Food Chem 57(7): 2719–2725. DOI:10.1021/jf803633f
Kamala A, Middha SK, Karigar CS. 2018. Plants in traditional medicine with special reference to Cyperus rotundus L.: a review. 3 Biotech 8(7): 309. DOI:10.1007/s13205-018-1328-6
Kang MS, Oh JS, Kang IC, Hong SJ, Choi CH. 2008. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol 46(6): 744–750. DOI:10.1007/s12275-008-0235-7
Karthikeyan S, Jain SK, Nayer MP, Sanjappa M. 1989. Florae Indicae Enumeratio: Monocotyledinae. (Flora of India), Botanical Survey of India, Calcutta.
Kawabata J, Mishima M, Kurihara H, Mizijtani J. 1991. Kobophenol B, a tetrastilbene from Carex pumila. Phytochemistry 30 (2): 645-647. DOI: 10.1016/0031-9422(91)83744-6
Kawabata J, Tchikawa S, Kurihara H, Mizutani J. 1989. Kobophenol A, a unique tetrastilbene from Carex kobomugi Ohwi (Cyperaceae). Tetrahedron Lett 30 (29): 3785-3788. DOI:10.1016/S0040-4039(01)80655-9
Kilani-Jaziri S, Bhouri W, Skandrani I, Limem I, Chekir-Ghedira L, Ghedira, K. 2011. Phytochemical, antimicrobial, antioxidant and antigenotoxic potentials of Cyperus rotundus extracts. S Afr J Bot 77(3): 767–776. DOI:10.1016/j.sajb.2011.03.015
Kilani S, Bouhlel I, Ben Ammar R, Ben Sghair M, Skandrani I, Boubaker J, Mahmoud A, Dijoux-Franca MG, Ghedira K, Chekir-Ghedira L. 2007. Chemical investigation of different extracts and essential oil from the tubers of (Tunisian) Cyperus rotundus. Correlation with their antiradical and antimutagenic properties. Ann Microbiol 57(4): 657–664. DOI:10.1007/BF03175369
Kim GD, Park YS, Jin YH, Park CS. 2015. Production and applications of rosmarinic acid and structurally related compounds. Appl Microbiol Biotechnol 99(5): 2083–2092. DOI:10.1007/s00253-015-6395-6
Kim MM, Kim SK. 2010. Effect of phloroglucinol on oxidative stress and inflammation. Food Chem Toxicol 48(10): 2925–2933. DOI:10.1016/j.fct.2010.07.029
Kumar A, Singh AK, Jalapure SS, Singh S. 2016. Evaluation of physiochemical and phytochemical properties of Kyllinga monocephala Rottb. rhizomes extracts. J Innov Pharm Biol Sci 3(2): 37-44.
Kumar D, Gupta N, Ghosh R, Gaonkar RH, Pal BC. 2013. ?-glucosidase and ?-amylase inhibitory constituent of Carex baccans: bio-assay guided isolation and quantification by validated RP-HPLC–DAD. J Funct Foods 5: 211-218. DOI:10.1016/j.jff.2012.10.007
Kumar V. 2016. Medicinal uses, phytochemistry and pharmacological activities of Motha (Cyperus rotundus Linn.): a potential herb. In: Jha SK (eds) Status and advancement in Ethnobotany.
Kurihara H, Kawabata J, Ichikawa S, Mizutani J. 1990. (-)-?-viniferin and related oligostilbenes from Carex pumila Thunb. (Cyperaceae). Agr Biol Chem 54 (4): 1097-1099. DOI:10.1080/00021369.1990.10870044
Kurihara H, Kawabata J, Ichikawa S, Mishima M, Mizutani J. 1991. Oligostilbenes from Carex kobomugi. Phytochemistry 30 (2): 649-653. DOI:10.1016/0031-9422(91)83745-7
Laparra JM, Sanz Y. 2010. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61(3): 219–225. DOI:10.1016/j.phrs.2009.11.001
Lee SH, Shin NH, Kang SH, Park JS, Chung SR, Min KR, Kim Y. 1998. ?-Viniferin: a prostaglandin H2 synthase inhibitor from root of Carex humilis. Planta Med 64: 204—207. DOI:10.1055/s-2006-957409
Li L, Henry GE, Seeram NP. 2009. Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J Agric Food Chem 57(16): 7282–7287. DOI:10.1021/jf901716j
Linnaeus C. 1755. Centuria I. Plantarum. Exc. L. M. H?JER, Reg. Acad. Typgr, Upsaliae.
Lopes-Costa E, Abreu M, Gargiulo D, Rocha E, Ramos AA. 2017. Anticancer effects of seaweed compounds fucoxanthin and phloroglucinol, alone and in combination with 5-fluorouracil in colon cells. J Toxicol Environ Health Part A 80(13-15): 776–787. DOI:10.1080/15287394.2017.1357297
Lunkai D, Songzum L, Zhang S, Tang Y, Koyama T, Tucker GC, Simpson DA, Noltie HJ, Strong MT, Bruhl JJ, Wilson KL, Muasya AM. 2010. Cyperaceae. In: Wu Zhengyi Raven PH, Hong Deyaun (eds), Flora of China. 23: 164-461. Science Press, Beijing & Missouri Botanical Garden Press, St Louis.
Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S. 2020. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol 11: 153. DOI:10.3389/fphar.2020.00153
Mancuso C, Santangelo R. 2014. Ferulic acid: pharmacological and toxicological aspects. Food Chemi Toxicol 65: 185–195. DOI:10.1016/j.fct.2013.12.024
Manhart JR. 1986. Foliar flavonoids of the north american members of Carex section Laxiflorae (Cyperaceae). Biochem Syst Ecol 14(1): 85-90. DOI:10.1016/0305-1978(86)90091-8
Manhart JR. 1990. Chemotaxonomy of the genus Carex (Cyperaceae). Can J Bot 68(7): 1457-1461. DOI:10.1139/b90-184
Manjunath SH, Thimmulappa RK. 2021. Antiviral, immunomodulatory, andanticoagulant effects of quercetin and its derivatives: potential role in prevention and management of COVID-19. J Pharm Anal. DOI:10.1016/j.jpha.2021.09.009
Meng Y, Bourne PC, Whiting P, Sik V, Dinan L. 2001. Identification and ecdysteroid antagonist activity of three oligostilbenes from the seeds of Carex pendula (Cyperaceae). Phytochemistry 57: 393–400. DOI:10.1016/S0031-9422(01)00061-9
Mika V, Kuban V, Klejdus B, Odstrcilova V, Nerusil P. 2005. Phenolic compound as chemical markers of low taxonomic levels in the family Poaceae. Plant Soil Environ 51(11): 506-512. DOI:10.17221/3624-PSE
Mohan C, Kumar SM, Naresh B, Reddy MS, Kumar BK, Devi BR, Manzelat SF, Manjula P, Keerthi B, Sreekanth D, Cherku PD. 2017. Phytochemical studies of the endangered tree, Saraca asoca (Roxb.) De Wilde. Ann Phytomedicine 6(1): 76-82. DOI:10.21276/ap.2017.6.1.11
Mojzer EB, Hrn?i? MK, Škerget M, Knez Z, Bren U. 2016. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7): 901. DOI:10.3390/molecules21070901
Mukhtar H, Ahmad N. 2000. Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71(6): 1698S–1702S. DOI:10.1093/ajcn/71.6.1698S
Nadeem M, Imran M, Aslam Gondal T, Imran, A, Shahbaz M, Muhammad Amir R, Wasim Sajid M, Batool Qaisrani T, Atif M, Hussain G, Salehi B, Adrian Ostrander E, Martorell M, Sharifi-Rad J, Cho WC, Martins N. 2019. Therapeutic potential of rosmarinic acid: a comprehensive review. Appl Sci 9(15): 3139. DOI:10.3390/app9153139
Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I, Yamamoto T, Yamamoto K. 2009. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity 17(2): 310–317. DOI:10.1038/oby.2008.505
Nakajima K, Taguchi H, Endo T, Yosioka I. 1978. The Constituents of Scirpus fluviatilis (TORR.) A. GRAY. I. The structures of two new hydroxystilbene dimmers, Scirpusin A and B. Chem Pharm Bull 26 (10): 3050-3057. DOI:10.1248/cpb.26.3050
Niesen DB, Ma H, Yuan T, Bach AC, Henry GE, Seeram NP. 2015. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 10(3): 491-493. DOI:10.1177/1934578X1501000328
Noltie HJ. 1993. Notes relating to the Flora of Bhutan: XXI Carex (Cyperaceae). Edinb J Bot 50(2): 185-206. DOI:10.1017/S0960428600002560
Noltie HJ. 1994. Flora of Bhutan. 3 (1): 273-407. Royal Botanic Garden, Edinburgh.
Noltie HJ. 2000. Contributions to The Flora of Bhutan: The Monocotyledons. Royal Botanic Garden, Edinburgh.
Noori M, Jafari M, Zakeri J. 2015. Root and aerial parts flavonoids of 3 Iranian Carex L. (Cyperaceae) species. Int J Plant Res 4(3): 51- 56. DOI: 10.5923/j.plant.20150503.01
Ohno Y, Fukuda K, Takemura G, Toyota M, Watanabe M, Yasuda N, Xinbin Q, Maruyama R, Akao S, Gotou K, Fujiwara T, Fujiwar H. 1999. Induction of apoptosis by gallic acid in lung cancer cells. Anti-Cancer Drugs 10(9): 845–851. DOI:10.1097/00001813-199910000-00008
Pádua D, Rocha E, Gargiulo D, Ramos AA. 2015. Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett 14: 91–98. DOI:10.1016/j.phytol.2015.09.007
Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. 2018. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C 92: 381–392. DOI:10.1016/j.msec.2018.06.055
Park HS, Hur HJ, Kim SH, Park SJ, Hong MJ, Sung MJ, Kwon DY, Kim MS. 2016. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice. Mol Nutr Food Res 60(9): 1944–1955. DOI: 10.1002/mnfr.201500689
Peerzada AM, Ali HH, Naeem M, Latif M, Bukhari AH, Tanveer A. 2015. Cyperus rotundus L.: traditional uses, phytochemistry, and pharmacological activities. J Ethnopharmacol 174: 540–560. DOI:10.1016/j.jep.2015.08.012
Pereira P, Tysca D, Oliveira P, da Silva Brum L, Picada JN, Ardenghi P. 2005. Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res 52(3): 199–203. DOI:10.1016/j.phrs.2005.03.003
Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavillaa MV, Sánchez-Campos S. 2017. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med 102: 188–202. DOI:10.1016/j.freeradbiomed.2016.11.037
POWO 2022. "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 14.02.2022."
Prain D. 1903. Bengal Plants. 2: 1127-1161. Botanical Survey of India, Calcutta.
Raheja S, Girdhar A, Lather V, Pandita D. 2018. Biochanin A: A phytoestrogen with therapeutic potential. Trends Food Sci Technol 79: 55–66. DOI:10.1016/j.tifs.2018.07.001
Reznicek AA. 1990. Evolution in sedges (Carex, Cyperaceae). Can J Bot 68: 1409-1432. DOI:10.1139/b90-180
Rivière C, Pawlus AD, Mérillon JM. 2012. Natural stilbenes: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. R Soc Chem 29(11): 1317-1333. DOI:10.1039/c2np20049j
Ryu J, Zhang R, Hong BH, Yang EJ, Kang KA, Choi M, Kim KC, Noh SJ, Kim HS, Lee NH, Hyun JW, Kim HS. 2013. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson’s disease by enhancing Nrf2 activity. PloS One 8(8): e71178. DOI:10.1371/journal.pone.0071178
Santhakumar AB, Battino M, Alvarez-Suarez JM. 2018. Dietary polyphenols: structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol 113: 49–65. DOI:10.1016/j.fct.2018.01.022
Seal T. 2016. Quantitative HPLC analysis of Phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthera linearis of North-Eastern region in India. J App Pharm Sci 6(02): 157-166. DOI:10.7324/JAPS.2016.60225
Seo H, Kim M, Kim S, Mahmud HA, Islam MI, Nam KW, Cho ML, Kwon HS, Song HY. 2017. In vitro activity of alpha-viniferin isolated from the roots of Carex humilis against Mycobacterium tuberculosis. Pulm Pharmacol Ther 46: 41–47. DOI:10.1016/j.pupt.2017.08.003
Sgarbossa A, Giacomazza D, di Carlo M. 2015. Ferulic acid: a hope for Alzheimer’s disease therapy from plants. Nutrients 7(7): 5764–5782. DOI:10.3390/nu7075246
Sharma A, Kashyap D, Sak K, Tuli HS, Sharma AK. 2018. Therapeutic charm of quercetin and its derivatives: A review of research and patents. Pharm Pat Anal 7(1): 15–32. DOI:10.4155/ppa-2017-0030
Shimamura T, Zhao WH, Hu ZQ. 2007. Mechanism of action and potential for use of tea catechin as an antiinfective agent. Antiinfect Agents Med Chem 6(1): 57–62. DOI:10.2174/187152107779314124
Simpson DA, Inglis CA. 2001. Cyperaceae of economic, ethnobotanical and horticultural importance: a checklist. Kew Bull 56(2): 257-360. DOI:10.2307/4110962
Singh BN, Shankar S, Srivastava RK. 2011. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12): 1807–1821. DOI:10.1016/j.lfs.2005.12.006
Singh G, Thaker R, Sharma A, Parmar D. 2021. Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice. Environ Sci Pollut Res 28(16): 20517–20536. DOI: 10.1007/s11356-020-11740-w
Singh IP, Sidana J, Bansal P, Foley WJ. 2009. Phloroglucinol compounds of therapeutic interest: global patent and technology status. Expert Opin Ther Pat 19(6): 847–866. DOI:10.1517/13543770902916614
Srinivasan M, Sudheer AR, Menon VP. 2007. Ferulic Acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40: 92–100. DOI: 10.3164/jcbn.40.92
Suzuki K, Shimizu T, Kawabata J, Mizutani J. 1987. New 3,5,4'-trihydroxystilbene (resveratrol) oligomers from Carex fedica Nees var. miyabei (Franchet) T. Koyama (Cyperaceae). Agric Biol Chem 51 (4): 1003-1008. DOI:10.1271/bbb1961.51.1003
Suzuki T, Pervin M, Goto S, Isemura M, Nakamura Y. 2016. Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules 21(10): 1305. DOI:10.3390/molecules21101305
Teixeira S, Siquet C, Alves C, Boal I, Marques MP, Borges F, Lima JLFC, Reis S. 2005. Structure–property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Med 39(8): 1099–1108. DOI:10.1016/j.freeradbiomed.2005.05.028
Thiers B. 2022 [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/
Tilloch A, Taylor R. 1823. The Philosophical Magazine and Journal: Comprehending the Various branches of Science, The liberal and fine arts, agriculture, manufactures and commerce. Richard Taylor, Shoe-Lane, London.
Toivonen H. 1974. Chromatographic comparison of the species of Carex section Heleonastes and some Carex canescens hybrids in Eastern Fennoscandia. Ann Bot Fenn 11(3): 225-230.
Tran HHT, Nguyen MC, Le HT, Nguyen TL, Pham TB, Chau MV, Nguyen HN, Nguyen TD. 2013. Inhibitors of ?-glucosidase and ?-amylase from Cyperus rotundus. Pharm Biol 52 (1): 74-77. DOI:10.3109/13880209.2013.814692
Truelsen T, Thudium D, Gronaek M. 2002. Amount and type of alcohol and risk of dementia: the copenhagen city heart study. Neurology 59(9): 1313-1319. DOI:10.1212/01.WNL.0000031421.50369.E7
Van de Staaij J, de Bakker NVJ, Oosthoek A, Broekman R, van Beem A, Stroetenga M, Aerts R, Rozema J. 2002. Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UV-B radiation. J Photochem Photobiol B: Biology 66(1): 21–29. DOI:10.1016/S1011-1344(01)00271-8
Verma RP, Hansch C. 2004. An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem 5(9): 1188–1195. DOI:10.1002/cbic.200400094
Wight R. 1834. Contribution to the Botany of India. Parbury, Allen, & Co., London.
Wu Q, Shang Y, Shen T, Liu F, Zhang W. 2021. Biochanin A protects SH-SY5Y cells against isoflurane-induced neurotoxicity by suppressing oxidative stress and apoptosis. Neurotoxicology 86: 10–18. DOI: 10.1016/j.neuro.2021.06.007
Yamada M, Hayashi K, Hayashi H, Ikeda S, Hoshino T, Tsutsui K, Iinuma M, Nozaki H. 2006a. Stilbenoids of Kobresia nepalensis (Cyperaceae) exhibiting DNA topoisomerase II inhibition. Phytochemistry 67: 307-313. DOI:10.1016/j.phytochem.2005.11.001
Yamada M, Hayashi K, Hayashi H, Tsuji R, Kakumoto K, Ikeda S, Hoshino T, Tsutsui K, Tsutsui K, Ito T, Iinuma M, Nozaki H. 2006b. Nepalensinols D—G, new resveratrol oligomers from Kobresia nepalensis (Cyperaceae) as potent inhibitors of DNA Topoisomerase II. Chem Pharm Bull 54(3): 354-358. DOI:10.1248/cpb.54.354
Yang CS, Maliakal P, Meng X. 2002. Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42(1): 25–54. DOI:10.1146/annurev.pharmtox.42.082101.154309
Yin M, Liu Y, Chen Y. 2021. Iron metabolism: an emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radic Res 55(1): 1-18. DOI:10.1080/10715762.2021.1898604
Youn J, Lee KH, Won J, Huh SJ, Yun HS, Cho WG, Paik DJ. 2003. Beneficial Effects of Rosmarinic Acid on Suppression of Collagen Induced Arthritis. J Rheumatol 30(6): 1203-7.
Yoon JY, Choi H, Jun HS. 2017. The effect of phloroglucinol, a component of Ecklonia cava extract, on hepatic glucose production. Mar Drugs 15(4): 106. DOI:10.3390/md15040106
Zafar M, Ahmad M, Khan MA, Sultana S, Jan G, Ahmad F, Jabeen A, Shah GM, Shaheen S, Shah A, Nazir A, Marwal SK. 2011. Chemotaxonomic clarification of pharmaceutically important species of Cyperus L. Afr J Pharm Pharmacol 5(1): 67–75. DOI:10.5897/ajpp10.254
Zaki AA, Ross SA, El-Amier YA, Khan IA. 2018. New flavans and stilbenes from Cyperus conglomerates. Phytochem Lett 26: 159-163. DOI:10.1016/j.phytol.2018.05.032
Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D. 2014. Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 6(1): 13–31. DOI:10.1039/c4fo00670d
Zaveri NT. 2006. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci 78(18): 2073–2080. DOI:10.1016/j.lfs.2005.12.006
Zdu?ska K, Dana A, Kolodziejczak A, Rotsztejn H. 2018. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31: 332–336. DOI:10.1159/000491755
Zhang H, Tsao R. 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8: 33–42. DOI:10.1016/j.cofs.2016.02.002
Zhang XX, Zhao DS, Wang J, Zhou H, Wang L, Mao JL, He JX. 2021. The treatment of cardiovascular diseases: a review of ferulic acid and its derivatives. Pharmazie 76: 55-60. DOI:10.1691/ph.2021.0958
Zhao L, Wang H, Du X. 2021. The therapeutic use of quercetin in ophthalmology: recent applications. Biomed Pharmacother 137: 111371. DOI:10.1016/j.biopha.2021.111371
Zhou Z, Yin W. 2012. Two novel phenolic compounds from the rhizomes of Cyperus rotundus L. Molecules 17: 12636-12641. DOI:10.3390/molecules171112636
Zhou Z, Zhang H. 2013. Phenolic and iridoid glycosides from the rhizomes of Cyperus rotundus L. Med Chem Res 22: 4830-4835. DOI:10.1007/s00044-013-0504-9