Antibacterial and antioxidant activity of endophytic fungi extracts isolated from the petiole of sungkai plant (Peronema canescens)




Abstract. Oktiansyah R, Elfita, Widjajanti H, Salni, Setiawan A. 2023. Antibacterial and antioxidant activity of endophytic fungi extracts isolated from the petiole of sungkai plant (Peronema canescens). Biodiversitas 24: 6516-6526. Indonesia has a diverse number of medicinal plants that are very helpful in preventing infectious diseases. Sungkai (Peronema canescens) is a medicinal plant of the family Verbenaceae that is often used and found in Indonesia. Its leaves possessed antibacterial and antioxidant properties that boost immunity and lessen the signs of infectious disorders. This study explored the types of endophytic fungi found in sungkai petioles and examined their relationship to previously reported sungkai leaf endophytic fungal isolates and spectrum of compounds contained them. Endophytic fungal were isolated from fresh leaf petioles of host plants, and their morphological and molecular characteristics were determined. Endophytic fungal extracts were tested for antibacterial and antioxidant properties. Utilizing the paper disk diffusion technique, the antibacterial characteristics were ascertained, while the DPPH method was used to determine antioxidant activity. Molecular identification was carried out on the fungal isolate with the most potential, and chemical compounds were isolated using column chromatography. The structures of the compounds were determined using spectroscopy, including 1D and 2D NMR. Eight endophytic fungal isolates were obtained from sungkai leaf stalks (RA1-RA8) of various species of the genus Trichoderma. Differences in the diversity of endophytic fungi found in leaf stalks and endophytic fungi from leaves were identified. RA1 showed the strongest antibacterial and antioxidant activity and was molecularly identified as T. harzianum. Spectroscopic analysis showed that the pure compound contained within was 9-hydroxy-7-methylenebenzo[c]oxepin-3(7H)-one (1), which had never previously been found in sungkai plants and endophytic fungi. The antibacterial activity of Compound 1 is in the strong category (MIC = 64 µg/mL) but is not active as an antioxidant. In terms of producing medicinal ingredients from endophytic fungi, T. harzianum in extract form has more potential to be developed.


Abbas, S., Shanbhag, T., & Kothare, A. (2021). Applications of bromelain from pineapple waste towards acne. Saudi Journal of Biological Sciences, 28(1), 1001–1009.
Adamczak, A., O?arowski, M., & Karpi?ski, T. M. (2020). Antibacterial activity of some flavonoids and organic acids widely distributed in plants. Journal of Clinical Medicine, 9(1).
Aini, K., Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A. R. (2022). Antibacterial activity of endophytic fungi isolated from the stem bark of jambu mawar (Syzygium jambos). Biodiversitas, 23(1), 521–532.
Alagawany, M., Attia, Y. A., Farag, M. R., Elnesr, S. S., Nagadi, S. A., Shafi, M. E., Khafaga, A. F., Ohran, H., Alaqil, A. A., & Abd El-Hack, M. E. (2021). The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Frontiers in Veterinary Science, 7(January), 1–17.
Alam, B., L?, J., G?, Q., Khan, M. A., G?ng, J., Mehmood, S., Yuán, Y., & G?ng, W. (2021). Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? Frontiers in Plant Science, 12(December), 1–24.
Alhazmi, H. A., Najmi, A., Javed, S. A., Sultana, S., Al Bratty, M., Makeen, H. A., Meraya, A. M., Ahsan, W., Mohan, S., Taha, M. M. E., & Khalid, A. (2021). Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Frontiers in Immunology, 12(May), 1–24.
Almanaa, T. N., Rabie, G., El-Mekkawy, R. M., Yassin, M. A., Saleh, N., & El-Gazzar, N. (2022). Antioxidant, antimicrobial and antiproliferative activities of fungal metabolite produced by Aspergillus flavus on in vitro study. Food Science and Technology (Brazil), 42, 1–10.
Alsharari, S. S., Galal, F. H., & Seufi, A. M. (2022). Composition and Diversity of the Culturable Endophytic Community of Six Stress-Tolerant Dessert Plants Grown in Stressful Soil in a Hot Dry Desert Region. Journal of Fungi, 8(3).
Antabe, R., & Ziegler, B. R. (2020). Diseases, Emerging and Infectious. International Encyclopedia of Human Geography, January, 389–391.
Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205.
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4).
Baron, N. C., & Rigobelo, E. C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 13(1), 39–55.
Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10(MAR), 1–12.
Burel, C., Kala, A., & Purevdorj-Gage, L. (2021). Impact of pH on citric acid antimicrobial activity against Gram-negative bacteria. Letters in Applied Microbiology, 72(3), 332–340.
Castro, P., Parada, R., Corrial, C., Mendoza, L., & Cotoras, M. (2022). Endophytic Fungi Isolated from Baccharis linearis and Echinopsis chiloensis with Antifungal Activity against Botrytis cinerea.
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2020). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant Physiology, 149(3), 1579–1592.
Cui, X. X., Wang, L., Fang, H. Y., Zheng, Y. G., & Su, C. Y. (2022). The cultivable endophytic fungal community of Scutellaria baicalensis: diversity and relevance to flavonoid production by the host. Plant Signaling and Behavior, 17(1), 1–8.
Deshmukh, S. K., Dufossé, L., Chhipa, H., Saxena, S., Mahajan, G. B., & Gupta, M. K. (2022). Fungal Endophytes: A Potential Source of Antibacterial Compounds. In Journal of Fungi (Vol. 8, Issue 2).
Dewage, E., Sandun, N., Nam, K., Huang, X., & Ahn, D. U. (2022). Mechanisms , and Applications?: A Review.
Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., & Kuca, K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants, 9(11), 1–38.
Dillasamola, D., Aldi, Y., Wahyuni, F. S., Rita, R. S., Dachriyanus, Umar, S., & Rivai, H. (2021). Study of Sungkai (Peronema canescens, Jack) leaf extract activity as an immunostimulators with in vivo and in vitro methods. Pharmacognosy Journal, 13(6), 1397–1407.
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Singh, A. K., Kumar, A., Singh, R. P., Meena, R. S., & Behera, T. K. (2022). Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection.
Elfita, Munawar, Muharni, & Sudrajat, M. A. (2014). Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa). HAYATI Journal of Biosciences, 21(1), 15–20.
Elfita, Oktiansyah, R., Mardiyanto, Widjajanti, H., & Setiawan, A. (2022). Antibacterial and antioxidant activity of endophytic fungi isolated from Peronema canescens leaves. Biodiversitas, 23(9), 4783–4792.
Elfita, Oktiansyah, R., Mardiyanto, Widjajanti, H., Setiawan, A., & Nasution, S. S. A. (2023). Bioactive Compounds of Endophytic Fungi Lasiodiplodia theobromae Isolated From The Leaves of Sungkai (Peronema canescens). Biointerface Research in Applied Chemistry, 13(6).
Ezeobiora, C. E., Igbokwe, N. H., Amin, D. H., & Mendie, U. E. (2021). Endophytic microbes from Nigerian ethnomedicinal plants: a potential source for bioactive secondary metabolites—a review. Bulletin of the National Research Centre, 45(1).
Farzana, M., Shahriar, S., Jeba, F. R., Tabassum, T., Araf, Y., Ullah, M. A., Tasnim, J., Chakraborty, A., Naima, T. A., Marma, K. K. S., Rahaman, T. I., & Hosen, M. J. (2022). Functional food: complementary to fight against COVID-19. Beni-Suef University Journal of Basic and Applied Sciences, 11(1).
Fernando, K., Reddy, P., Guthridge, K. M., Spangenberg, G. C., & Rochfort, S. J. (2022). A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites. Metabolites, 12(1).
Filizola, P. R. B., Luna, M. A. C., De Souza, A. F., Coelho, I. L., Laranjeira, D., & Campos-Takaki, G. M. (2019). Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microbial Cell Factories, 18(1), 1–14.
Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D., & Neto, D. D. (2021). Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens, 10(5), 1–28.
García-Mier, L., Guevara-González, R. G., Mondragón-Olguín, V. M., Verduzco-Cuellar, B. del R., & Torres-Pacheco, I. (2013). Agriculture and bioactives: Achieving both crop yield and phytochemicals. International Journal of Molecular Sciences, 14(2), 4203–4222.
García, L. F. (2020). Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Frontiers in Immunology, 11(June), 4–8.
Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1).
Grabka, R., D’entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants, 11(3), 1–29.
Hapida, Y., Elfita, Widjajanti, H., & Salni. (2021). Biodiversity and antibacterial activity of endophytic fungi isolated from jambu bol (Syzygium malaccense). Biodiversitas, 22(12), 5668–5677.
Hmamou, A., Eloutassi, N., Alshawwa, S. Z., Al Kamaly, O., Kara, M., Bendaoud, A., El-Assri, E. M., Tlemcani, S., El Khomsi, M., & Lahkimi, A. (2022). Total Phenolic Content and Antioxidant and Antimicrobial Activities of Papaver rhoeas L. Organ Extracts Growing in Taounate Region, Morocco. Molecules, 27(3), 1–12.
Hridoy, M., Gorapi, M. Z. H., Noor, S., Chowdhury, N. S., Rahman, M. M., Muscari, I., Masia, F., Adorisio, S., Delfino, D. V., & Mazid, M. A. (2022). Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules, 27(1).
Ikram, M., Ali, N., Jan, G., Hamayun, M., Jan, F. G., & Iqbal, A. (2019). Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense. Acta Physiologiae Plantarum, 41(9).
Jean Maguire van Seventer, & Hochberg, N. S. (2017). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. International Encyclopedia of Public Health, 6(2), 22–39.
Karimi, E., Jaafar, H. Z. E., & Ahmad, S. (2011). Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf, stem and root from different varieties of labisa pumila benth. Molecules, 16(6), 4438–4450.
Kim, K., Heo, Y. M., Jang, S., Lee, H., Kwon, S. L., Park, M. S., Lim, Y. W., & Kim, J. J. (2020). Diversity of Trichoderma spp. In marine environments and their biological potential for sustainable industrial applications. Sustainability (Switzerland), 12(10).
Konappa, N., Udayashankar, A. C., Dhamodaran, N., Krishnamurthy, S., Jagannath, S., Uzma, F., Pradeep, C. K., De Britto, S., Chowdappa, S., & Jogaiah, S. (2021). Ameliorated antibacterial and antioxidant properties by trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomolecules, 11(4).
Kusriani, R. H., Nawawi, A., & Turahman, T. (2015). Uji Aktivitas Antibakteri Ekstrak Dan Fraksi Kulit Batang Dan Daun Sungkai (Peronema Canescens Jack) Terhadap Staphylococcus Aureus Atcc 25923 Dan Escherichia Coli ATCC 25922. Jurnal Farmasi Galenika, 2(1), 8–14.
Li, Z., Wen, W., Qin, M., He, Y., Xu, D., & Li, L. (2022). Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Frontiers in Microbiology, 13(July).
Liu, X., Zhou, Z. Y., Cui, J. L., Wang, M. L., & Wang, J. H. (2021). Biotransformation ability of endophytic fungi: from species evolution to industrial applications. Applied Microbiology and Biotechnology, 105(19), 7095–7113.
Llauradó Maury, G., Méndez Rodríguez, D., Hendrix, S., Escalona Arranz, J. C., Fung Boix, Y., Pacheco, A. O., García Díaz, J., Morris Quevedo, H. J., Ferrer Dubois, A., Isaac Aleman, E., Beenaerts, N., Méndez Santos, I. E., Orberá Ratón, T., Cos, P., & Cuypers, A. (2020). Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in cuba. Antioxidants, 9(11), 1–39.
Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 14–16.
Marshall, J. S., Warrington, R., Watson, W., & Kim, H. L. (2018). An introduction to immunology and immunopathology. Allergy, Asthma and Clinical Immunology, 14(s2), 1–10.
Neamul Kabir Zihad, S. M., Hasan, M. T., Sultana, M. S., Nath, S., Nahar, L., Rashid, M. A., Uddin, S. J., Sarker, S. D., & Shilpi, J. A. (2022). Isolation and Characterization of Antibacterial Compounds from Aspergillus fumigatus: An Endophytic Fungus from a Mangrove Plant of the Sundarbans. Evidence-Based Complementary and Alternative Medicine, 2022.
Oktiansyah, R., Elfita, E., Widjajanti, H., Setiawan, A., Hariani, P. L., & Hidayati, N. (2023a). Endophytic fungi isolated from the root bark of sungkai ( Peronema canescens ) as Anti-bacterial and antioxidant. Journal of Medical Pharmaceutical and Allied Sciences, 12(2320), 8–15.
Oktiansyah, R., Elfita, E., Widjajanti, H., Setiawan, A., Mardiyanto, M., & Nasution, S. S. A. (2023b). Antioxidant and Antibacterial Activity of Endophytic Fungi Isolated from The Leaves of Sungkai (Peronema canescens). Tropical Journal of Natural Product Research, 7(3), 2596–2604.
Oktiansyah, R., Widjajanti, H., Setiawan, A., Nasution, S. Sa. A., Mardiyanto, M., & Elfita. (2023c). Antibacterial and Antioxidant Activity of Endophytic Fungi Extract Isolated from Leaves of Sungkai (Peronema canescens). Science and Technology Indonesia, 8(2), 170–177. 1.
Oktiansyah, R., Juliandi, B., Widayati, K. A., & Juniantito, V. (2018). Neuronal cell death and mouse (Mus musculus) behaviour induced by bee venom. Tropical Life Sciences Research, 29(2).
Omomowo, I. O., Fadiji, A. E., & Omomowo, O. I. (2020). Antifungal Evaluation and Phytochemical Profile of Trichoderma Harzianum and Glomus Versiforme Secondary Metabolites on Cowpea Pathogens. Asian Jr. of Microbiol. Biotech. Env. Sc., 22(2), 265–272.
Peng, X., Wu, B., Zhang, S., Li, M., & Jiang, X. (2021). Transcriptome Dynamics Underlying Chlamydospore Formation in Trichoderma virens GV29-8. Frontiers in Microbiology, 12(June), 1–23.
Pfannenstiel, B. T., Keller, N. P., States, U., & States, U. (2019). HHS Public Access. 37(6), 1–35.
Pitt, J. I., & Hocking, A. D. (2013). Fungi and Food Spolage. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).
Rahardjanto, A., Ikhtira, D. A., Nuryady, M. M., Pantiwati, Y., Widodo, N., & Husamah, H. (2021). The medicinal plant potential parts and species diversity as antipyretic: Ethnobotany study at Senduro Lumajang. AIP Conference Proceedings, 2353(May).
Rai, N., Kumari Keshri, P., Verma, A., Kamble, S. C., Mishra, P., Barik, S., Kumar Singh, S., & Gautam, V. (2021). Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology, 00(00), 1–21.
Rashmi, M., & Venkateswara Sarma, V. (2018). Secondary Metabolite Production by Endophytic Fungi: The Gene Clusters, Nature, and Expression. 1–16.
Sharma, H., Rai, A. K., Dahiya, D., Chettri, R., & Nigam, P. S. (2021). Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS Microbiology, 7(2), 175–199.
Singh, A., Singh, D. K., Kharwar, R. N., White, J. F., & Gond, S. K. (2021). Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms, 9(1), 1–42.
Sumilat, D. A., Lintang, R. A. J., Undap, S. L., Adam, A. A., & Tallei, T. E. (2022). Phytochemical, antioxidant, and antimicrobial analysis of Trichoderma asperellum isolated from ascidian Eudistoma sp. Journal of Applied Pharmaceutical Science, 12(4), 90–95.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027.
Tiwari, P., & Bae, H. (2020). Horizontal gene transfer and endophytes: An implication for the acquisition of novel traits. Plants, 9(3).
Tiwari, P., & Bae, H. (2022). Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms, 10(2).
Tomas, M., Capanoglu, E., Bahrami, A., Hosseini, H., Akbari-Alavijeh, S., Shaddel, R., Rehman, A., Rezaei, A., Rashidinejad, A., Garavand, F., Goudarzi, M., & Jafari, S. M. (2022). The direct and indirect effects of bioactive compounds against coronavirus. Food Frontiers, 3(1), 96–123.
Ty?kiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-?cise?, J. (2022). Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. International Journal of Molecular Sciences, 23(4).
Van de Vuurst, P., & Escobar, L. E. (2020). Perspective: Climate Change and the Relocation of Indonesia’s Capital to Borneo. Frontiers in Earth Science, 8(January), 1–6.
Vigneshwari, A., Rakk, D., Németh, A., Kocsubé, S., Kiss, N., Csupor, D., Papp, T., Škrbi?, B., Vágvölgyi, C., & Szekeres, A. (2019). Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS ONE, 14(5), 1–16.
Walsh, T. J., Hayden, R. T., & Larone, D. H. (2018). Larone’s Medically Important Fungi. In Larone’s Medically Important Fungi.
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi. In Pictorial Atlas of Soil and Seed Fungi.
Wen, J., Okyere, S. K., Wang, S., Wang, J., Xie, L., Ran, Y., & Hu, Y. (2022). Endophytic Fungi: An Effective Alternative Source of Plant?Derived Bioactive Compounds for Pharmacological Studies. Journal of Fungi, 8(2).
Xia, Y., Liu, J., Chen, C., Mo, X., Tan, Q., He, Y., Wang, Z., Yin, J., & Zhou, G. (2022). The Multifunctions and Future Prospects of Endophytes and Their Metabolites in Plant Disease Management. Microorganisms, 10(5), 1–19.
Xu, K., Li, X. Q., Zhao, D. L., & Zhang, P. (2021). Antifungal Secondary Metabolites Produced by the Fungal Endophytes: Chemical Diversity and Potential Use in the Development of Biopesticides. Frontiers in Microbiology, 12(June), 1–17.
Zeng, Y., Koh, L. P., & Wilcove, D. S. (2022). Gains in biodiversity conservation and ecosystem services from the expansion of the planet’s protected areas. Science Advances, 8(22), 1–9.
Zhao, J., Zhou, L., Wang, J., Shan, T., Zhong, L., Liu, X., & Gao, X. (2010). Endophytic fungi for producing bioactive compounds originally from their host plants. August 2015, 567–576.