Seagrass diversity in Pulau Banyak, Aceh Singkil District, Indonesia




Abstract. Erniati, Andika Y, Imanullah, Imamshadiqin, Erlangga, Rahmad, Tauladan TA, Siregar FR, Fitri A, Ritonga GH. 2023. Seagrass diversity in Pulau Banyak, Aceh Singkil District, Indonesia. Biodiversitas 24: 6621-6628. Seagrass is a high-level plant where life activities are submerged in seawater. Currently, the seagrass ecosystem is threatened with destruction and disappearance. The extent of seagrass ecosystems globally was estimated to have declined by about 58%. The solution to this problem is to balance local communities' utilization of biological resources and biodiversity maintenance. The biodiversity aspect of seagrass is key to the sustainability of seagrass ecosystems. Banyak Island is one of the sub-districts in Aceh Singkil Regency, which consists of a cluster of small islands and has rich fisheries and marine potential, one of them is seagrass, where station 1 is Balong Island, Stasion 2 is Balong Island, Stasion 3 is Lamun Island and Stasion 4 is Rago-Rago Island. This study aimed to assess the diversity of seagrass beds, including seagrass species composition, density, percentage cover, and water quality that affect the existence of seagrass ecosystems. This study used a purposive sampling method with 3 transect lines spaced 50 m perpendicular from the shoreline to the sea. Each transect line has 5 plots with a distance of 10 meters measuring 50 x 50 cm2, and the water quality parameters were measured in situ. This research found 5 seagrass species, namely T. hemprichii, C. rotundata, E. acroides, S. isoetifolium, and H. ovalis. C. rotundata is the species with the highest density on Matahari Island, but seagrass diversity is low, and no species were dominant in the groups. The results of PCA analysis showed that the environmental factors that most influenced the pattern of seagrass distribution and density were nitrate, phosphate, and substrate. The conclusion revealed that seagrass diversity on Banyak Islands is relatively low.


Allgeier JE, Layman CA, Montana CG, Hensel E, Appaldo R, Rosemond AD. 2018. Anthropogenic versus fish-derived nutrient effects on seagrass community structure and function. The Ecological Society of America 99 (8): 1-10. DOI: 10.1002/ecy.2388.
Andika Y, Kawaroe M, Effendi H, Zamani NP, Erniati, Erlangga, Adhar S, Imanullah, Imamshadiqin, ‘Akla CMN, Sugara A, Ilhami BTK. 2023. The effect of differences in water pH on the growth rate of seagrass species Cymodocea rotundata. Journal of Tropical Marine Science and Technology 15 (1): 99-111. DOI: 10.29244/jitkt.v15i1.43331.
Blackford JC, Gilbert FJ. 2007. pH variability and CO2 induced acidification in the North Sea. Journal of Marine Systems 64: 229-241. DOI: 10.1016/j.jmarsys.2006.03.016.
Carmen B, Krause-Jensen D, Alcoverro T, Marb’a, N, Duarte CM, Katwijk VMM, Perez M, Romero J, Shances-Lizaso JL, Roca G, Jankowska E, Perez-Llorens JL, Fournier J, Montefalcone M, Pergent G, Ruiz JM, Cabaco S, Cook K, Wilkes RJ, Moy, FE, Traytor GMR, Arano XS, Jong DJD, Fernandes-Torquermada Y, Auby I, Vergara JJ, Santos, R. 2019. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10 (1), 1–8. DOI: 10.1038/s41467-019-11340-4.
Costanza R, D’Arge R, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, Belt MVD. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.
Dewsbury BM, Bhat M, Fourqurean JW. 2016. A review of seagrass economic valuations: gaps and progress in valuation approaches. Ecosyst. Serv. 18: 68–77. DOI: 10.1016/j.ecoser.2016.02.010.
English S, Wilkinson C, Baker V. 1997. Survey manual for tropical marine resources. Australian Institute of Marine Science (AIMS), Townsville.
Erniati, Erlangga, Andika A, Muliani. 2023. Seaweed diversity and community structure on the west coast of Aceh, Indonesia. Biodiversitas 24 (4): 2189-2200. DOI: 10.13057/biodiv/d24043.
Fitrian T, Kusnadi A, Persilette RN. 2017. Seagrass community structure of Tayando-Tam Island, Southeast Moluccas, Indonesia. Biodiversitas 18 (2): 788-794. DOI: 10.13057/biodiv/d180250.
Fortes MD, Ooi JL, Tan YL, Prathep A, Bujang JS, Yaakub SM. 2018. Seagrass in Southeast Asia: A review of status and knowledge gaps, and a road map for conservation. Botanica Marina 61: 269-288. DOI:10.1515/bot-2018-0008.
Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5 (7): 505-509. DOI: 10.1038/ngeo1477.
French B, Wilson S, Holmes T, Kendrick A, Rule M, Ryan N. 2021. Comparing five methods for quantifying abundance and diversity of fish assemblages in seagrass habitat. Ecol Ind. 124 (1): 1-13. DOI: 10.1016/j.ecolind.2021.107415.
Hernawan UE, Rahmawati S, Rohani AR, Nurul DMS, Hadiyanto H, Deny SY, Aditya HN, Yayu ALN, Adi W, Prayudha B, Irawan A, Rahayu YP, Ningsih E, Ritniasih I, Supriadi IH, McMahon K. 2021. The first nation-weed assessment identifies valuable blue-carbon seagrass habitat in Indonesia is in moderate condition. Sci Total Environ. 634: 279-86. DOI: 10.1016/j.scitotenv.2021.146818.
Iswari MY, Hernawan UE, Sjafrie NDM, Supriadi HI, Suryaso S, Anggraini K, Rahmat R. 2017. Seagrass Map Album. Oceanographic Research Center . Jakarta.
Kaewriskhaw R, Prathep A. 2014. The effect of habitats, densities and season on morphology, anatomy and pigment content of the seagrass Halophilla ovalis (R.Br.) Hook. At Haad Cho Mai National Park, Southern Thailand. Aquatic Botany 116: 69-75. DOI: 10.1016/j.aquabot.2014.01.009.
Kawaroe M, Nugraha AH, Juraij, Tasabaramo IA. 2016. Seagrass biodiversity at three marine ecoregions of Indonesia: Sunda shelf, Sulawesi Sea, and Banda Sea. Biodiversitas 17 (2): 585-591. DOI: 10.13057/biodiv/d170228.
Kennedy H, Bjork M. 2009. Seagrass meadows. In D. d'A. Laffoley & G. Grimsditch (Eds.), The management of natural coastal carbon sinks (pp. 23–29). Gland, Switzerland: International Union for Conservation of Nature.
Krebs CJ. 1998. Ecological methodology (second edition). Addison-Welsey Educational Publishers. New York.
Kurniawan F, Imran Z, Darus RF, Anggraeni F, Damar A, Sunuddin A, Kamal MM, Pratiwi NTM, Ayu IP, Iswantari A. 2020. Rediscovering Halophila major (Zollinger) Miquel (1855) in Indonesia. Aquatic Botany 161: 103171. DOI: 10.1016/j.aquabot.2019.103171
Lamb JB, Water VDJAJM, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell ACD. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355: 731–733. DOI: 10.1126/science. aal1956
Lincoln S, Vannoni M, Benson L, Engelhard GH, Tracey D, Shaw C, Molisa V. 2021. Assessing intertidal seagrass beds relative to water quality in Vanuatu, South Pacific. Mar. Pollut. Bull. 163: 111936. DOI: 10.1016/j.marpolbul.2020.111936.
Lohr KE, Smith DJ, Suggett DJ, Nitschke MR, Dumbrell AJ, Woodcock S, Camp E. 2017. Coral community structure and recruitment in seagrass meadows. Frontiers in Marine Science 4: 1-13. DOI: 10.3389/fmars.2017.00388.
Maslukah L, Zainuri M, Wirasatriya A, Maisyarah S. 2020. The relationship among dissolved inorganic phosphate, particulate inorganic phosphate, and chlorophyll-a in different seasons in the Coastal Seas of Semarang and Jepara. Journal of Ecological Engineering 21 (3): 135-142. DOI: 10.12911/22998993/118287.
Metananda AA, Zuhud EAM, Hikmat A. 2015. Population, distribution and associations of kepuh (Sterculia foetida l.) in Sumbawa Regency, West Nusa Tenggara. Conservation Media 20 (3): 277-287. DOI: 10.29244/medkon.20.3.%25p.
Mishra AK, Cabaço S, De Los Santos CB, Apostolaki ET, Vizzini S, Santos R. 2020. Long-term effects of elevated CO2 on the population dynamics of the seagrass Cymodocea nodosa: evidence from volcanic seeps. Marine Pollution Bulletin 162: 1-11. DOI: 10.1016/j.marpolbul.2020.111824.
Moussa MR, Frederic B, Hendrikje J, Camille G, Viliame PQ, Valeriano P, David L, Rene G. 2020. Importance of intertidal seagrass beds as
nursery area for coral reef fish juveniles (Mayotte, Indian Ocean). Reg. Stud. Mar. Sci. 33: 100965. DOI: 10.1016/j.rsma.2019.100965.
Nakaoka M, Lee KS, Huang X, Almonte T, Bujang J, Kiswara W, et al. 2014. “Regional comparison of the ecosystem services from seagrass beds in Asia,” in Integrative Observations and Assessments. Ecological Research Monographs, eds S. Nakano, T. Yahara, and T. Nakashizuka (Tokyo: Springer), DOI: 10.1007/978-4-431-54783-9_20.
Nordlund LM, Evamaria WK, Edward BB, Joel CC. 2016. Seagrass ecosystem services and their variability across genera and
geographical regions. Plos One 11: 1-10. DOI: 10.1371/journal.pone.0163091.
Nugraha AH, Hazrul, Susiana, Febrianto T. 2020. Morphological characteristics and growth of Halophila ovalis seagrass in several coastal areas of Bintan Island. Depik. 9 (3): 471-477. DOI: 10.13170/depik.9.3.17781.
Nugraha AH, Tasabaramo IA, Hernawan UE, Rahmawati S, Irawan A, Juraij J, Putra RD, Darus RF. 2021. Diversity, coverage, distribution and ecosystem services of seagrass in three small islands of northern Papua, Indonesia: Liki Island, Meossu Island and Befondi Island. Biodiversitas 22 (12): 5544-5549. DOI: 10.13057/biodiv/d221238.
Odum EP, 1993. Basics of Ecology. Third edition. Gajah Mada University Press. Yogyakarta.
Photiou P, Koutsokeras L, Constantinides G, Koutinas M, Vyrides I. 2021. Phosphate removal from synthetic and real wastewater using thermally treated seagrass residues of Posidonia oceanica. Journal of Cleaner Production 278: 1-13. DOI: 10.1016/j.jclepro.2020.123294.
Pramesti R, Susanto AB, Setyati WA, Ridlo A, Subagiyo S, Oktaviaris Y. 2016. Community structure and anatomy of seaweed in the waters of Awur Bay, Jepara and Krakal beach, Yogyakarta. Tropical Marine Journal 19 (2): 81-94. DOI: 10.14710/jkt. v19i2.822.
Putri N, Afriyansyah B, Marwoto RM. 2021. Bivalvia Density in the Perpat and Bunting Belinyu Mangrove Estuary Area, Bangka. Tropical Marine Journal 24 (1): 123-132. DOI. 10.14710/jkt.v24i1.9838.
Short FT, Carruthers T, Dennison W, Waycott M. 2007. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350: 3–20. DOI: 10.1016/j.jembe.2007.06.012.
Short FT, Short CA, Novak A. 2016. Seagrasses. In: The Wetland Book: II: Distribution, Description and Conservation. Springer, Dordrecht.
Sjafrie NDM, Hernawan UE, Prayudha B, Supriyadi IH, Iswari MY, Rahmat, Anggraini K, Rahmawati S, Suyarso. 2018. Status of Indonesian Seagrass Fields Version 2. Center for Oceanographic Research, Institute of Sciences Press, Jakarta.
UN Environment. 2018. Analysis of International Funding for the Sustainable Management of Coral Reefs and Associated Coastal Ecosystems. Nairobi.
UNEP. 2020. Opportunities and Challenges for Community-Based Seagrass Conservation. Nairobi.
Unsworth RKF, Nordlund LM, Cullen-Unsworth LC. 2019. Seagrass meadows support global fisheries production. Conserv. Lett. 12: 1-8. DOI: 10.1111/ conl.12566.
Vo TT, Lau K, Liao LM, Nguyen XV. 2020. Satellite image analysis reveals changes in seagrass beds at Van Phong Bay, Vietnam during the last 30 years. Aquat. Living Resour. 33 (4): 1-10. DOI: 10.1051/alr/2020005.
Wainwright, BJ, Bauman AG, Zahn GL, Todd P A, Huang D. 2019. Characterization of fungal biodiversity and communities associated with the reef Macroalga Sargassum Ilicifolium reveals fun? gal community differentiation according to geographic locality and algal structure. Marine Biodiversity 49: 1–8. DOI: 10.1007/s12526?019?00992?6.
Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106: 12377-12381.
Xu S, Qiao Y, Xu S, Yue S, Zhang Y, Liu M, Zhang X, Zhou Y. 2021. Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, northern China: Implications for seagrass conservation. Mar Poll Bull. 167 (1): 1-13.
Zhang J, Huang X, Jiang Z. 2014. Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading. Marine Pollution Buletin 83 (20): 508-515. DOI: 10.1016/j.marpolbul.2013.12.056.
Zhou Y, Liu XJ, Liu BJ, Liu P, Wang F, Zhang XM, Yang HS. 2015. Unusual pattern in characteristics of the eelgrass Zostera marina L. in a shallow lagoon (swan Lake), North China: implications on the importance of seagrass conservation. Aquat. Bot. 120: 178–184. DOI: 10.1016/j.aquabot.2014.05.014.