Trypan blue dye decolorization by Aeromonas caviae isolated from water sewage in Jakarta, Indonesia

##plugins.themes.bootstrap3.article.main##

REINHARD PINONTOAN
TAN STEVEN RYAN SUSANTO
JAP LUCY
CHRISTINE ANGELINA
SAMUEL EMMANUEL SOENTORO
JONATHAN SUCIONO PURNOMO
MELANIE CORNELIA

Abstract

Abstract. Pinontoan R, Susanto TSR, Lucy J, Angelina C, Soentoro SE, Purnomo JS, Cornelia M. 2024. Trypan blue dye decolorization by Aeromonas caviae isolated from water sewage in Jakarta, Indonesia. Biodiversitas 25: 1631-1637. The textile industry generates a substantial amount of hazardous chemical waste, which requires proper treatment to mitigate negative environmental and health consequences if left untreated. Studies on the removal of Trypan Blue (TB), a widely used commercial diazo textile dye, by indigenous bacteria are limited. Therefore, this study aimed to isolate, identify, and characterize microorganisms capable of decolorizing TB in textile dye-contaminated wastewater from Jakarta. Microorganisms were initially screened for decolorization activity in solid media containing TB. Among the isolated strains, TB2 isolate exhibited the highest decolorizing potential and was selected for further analysis. The morphological, biochemical, molecular, and phylogenetic characteristics of the TB2 isolate revealed that it belonged to the species Aeromonas caviae. To examine the ability of the isolate to remove TB, various culture conditions, such as pH, temperature, and agitation, were tested. The results demonstrated that the A. caviae TB2 strain could reduce up to 77.10% of TB (0.0025% (w/v)) under static conditions, pH 7.0, and 27°C over six days. To our knowledge, this is the first study to report the ability of the Aeromonas genus to decolorize TB. These results imply the potential use of A. caviae for decolorizing dye-bearing industrial wastewater.

##plugins.themes.bootstrap3.article.details##

References
Ajaz M, Shakeel S, Rehman A. 2020. Microbial use for azo dye degradation-a strategy for dye bioremediation. Int Microbiol, 23(2): 149–159. doi: 10.1007/s10123-019-00103-2
Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA, Elsamahy T, Jiao H, Fu Y, Sun J. 2022. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 231: 113160. doi: 10.1016/j.ecoenv.2021.113160
Amalina F, Razak AS, Krishnan S, Zularisam AW, Nasrullah M. 2022. Dyes removal from textile wastewater by agricultural waste as an absorbent – a review. Cleaner Waste Systems, 3: 100051. doi: 10.1016/j.clwas.2022.100051
Barathi S, Aruljothi KN, Karthik C, Padikasan IA. 2020. Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue 160 textile dye by Bacillus subtilis. Biotechnol. Rep. 28: e00522. doi: 10.1016/j.btre.2020.e00522
Benkhaya S, M'rabet S, El Harfi A. 2020. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1): e03271. doi: 10.1016/j.heliyon.2020.e03271
Desai, C., Jain, K. R., Boopathy, R., van Hullebusch, E. D., & Madamwar, D. 2021. Editorial: Eco-Sustainable Bioremediation of Textile Dye Wastewaters: Innovative Microbial Treatment Technologies and Mechanistic Insights of Textile Dye Biodegradation. Front. Microbiol. 12: 707083. doi: 10.3389/fmicb.2021.707083
El Bouraie M, El Din WS. 2016. Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain. Environ. Res. 26(5): 209–216. doi: 10.1016/j.serj.2016.04.014
Guerrero R. 2001. Bergey's manuals and the classification of prokaryotes. Int. Microbiol. 4(2): 103–109. doi: 10.1007/s101230100021
Guo G, Li X, Tian F, Liu T, Yang F, Ding K, Liu C, Chen J, Wang C. 2020. Azo dye decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere, 244: 125510. doi: 10.1016/j.chemosphere.2019.125510
Haque MM, Haque MA, Mosharaf MK, Islam MS, Islam MM, Hasan M, Molla AH, Haque MA. 2022. Biofilm-mediated decolorization, degradation and detoxification of synthetic effluent by novel biofilm-producing bacteria isolated from textile dyeing effluent. Environ. Pollut. 314: 120237. doi: 10.1016/j.envpol.2022.120237
Hashem, R. A., Samir, R., Essam, T. M., Ali, A. E., Amin, M. A. 2018. Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155. AMB Express, 8(1): 83. doi: 10.1186/s13568-018-0616-1
Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI. 2012. Emerging Aeromonas species infections and their significance in public health. Sci. World. J. 2012: 625023. doi: 10.1100/2012/625023
Irawati W, Pinontoan R, Mouretta B, Yuwono T. 2022. The potential of copper-resistant bacteria Acinetobacter sp. strain CN5 in decolorizing dyes. Biodiversitas Journal of Biological Diversity, 23(2):680-686. doi: 10.13057/biodiv/d230212
Jamee R, Siddique R. 2019. Biodegradation of Synthetic Dyes of Textile Effluent by Microorganisms: An Environmentally and Economically Sustainable Approach. Eur. J. Microbiol. Immunol. 9(4): 114–118. doi: 10.1556/1886.2019.00018
Joshi T, Iyengar L, Singh K, Grag S. 2008. Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresour. Technol. 99: 7115-7121. doi: 10.1016/j.biortech.2007.12.074
Katheresan V, Kansedo J, Lau SY. 2018. Efficiency of various recent wastewater dye removal methods: A Review. J. Environ. Chem. Eng. 6(4): 4676–4697. doi: 10.1016/j.jece.2018.06.060
Khalid A, Arshad M, Crowley DE. 2008. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl. Microbiol. Biotechnol. 78: 361-369. doi: 10.1007/s00253-007-1302-4
Lade H, Kadam A, Paul D, Govindwar S. 2015. A low-cost wheat bran medium for biodegradation of the benzidine-based carcinogenic dye trypan blue using a microbial consortium. Int. J. Environ. Res. Public Health. 12: 3480-3505. doi: 10.3390/ijerph120403480
Masarbo RS, Karegoudar, TB. 2022. Decolourisation of toxic azo dye Fast Red E by three bacterial strains: process optimisation and toxicity assessment. Int. J. Environ. Anal. 102(11): 2686-2696, doi: 10.1080/03067319.2020.1759048
Michelle, Siregar, R. A., Sanjaya, A., Lucy, J., Pinontoan, R. 2020. Methylene blue decolorizing bacteria isolated from water sewage in Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity, 21(3): 1136-1141. doi: 10.13057/biodiv/d210338
Mishra A, Takkar S, Joshi NC, Shukla S, Shukla K, Singh A, Manikonda A, Varma A. 2022. An Integrative Approach to Study Bacterial Enzymatic Degradation of Toxic Dyes. Front. Microbiol. 12: 802544. doi: 10.3389/fmicb.2021.802544
Montañez-Barragán B, Sanz-Martín JL, Gutiérrez-Macías P, Morato-Cerro A, Rodríguez-Vázquez R, Barragán-Huerta BE. 2020. Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor. Extremophiles, 24(2): 239-247. doi: 10.1007/s00792-019-01149-w
Ngo ACR, Tischler D. 2022. Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. International Journal of Environmental Research and Public Health, 19(8), 4740. doi: 10.3390/ijerph19084740
Pinontoan R, Supandi MT, Andhika J, Sutanto MI, Victor H. 2019. Removal of malachite green toxicity using water hyacinth (Eichhornia crassipes) biomass. IOP Conf. Ser. Earth Environ. Sci. 346(1): 012006. doi: 10.1088/1755-1315/346/1/012006
Purnomo JS, Victor H, Dikson, Cornelia M, Pinontoan R. 2023. Decolorization potential of malachite green by Ralstonia Mannitolilytica isolated from Indonesian cassava-based fermented food tapai. Arch. Microbiol. 205(10). doi: 10.1007/s00203-023-03678-7
Ren S, Guo J, Zeng G, Sun G. 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotechnol. 72: 1316-1321. doi: 10.1007/s00253-006-0418-2
Seyedi ZS, Zahraei Z, Kashi FJ. 2020. Decolorization of Reactive Black 5 and Reactive Red 152 Azo Dyes by New Haloalkaliphilic Bacteria Isolated from the Textile Wastewater. Curr. Microbiol. 77(9): 2084–2092. doi: 10.1007/s00284-020-02039-7
Slama HB, Bouket AC, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Goli?ska P, Belbahri L. 2021. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci. 11(14): 1–21. doi: 10.3390/app11146255
Srinivasan S, Sadasivam SK. 2021. Biodegradation of textile azo dyes by textile effluent non-adapted and adapted Aeromonas hydrophila. Environ. Res. 194: 110643. doi: 10.1016/j.envres.2020.110643
Srivastava A, Dangi LK, Kumar S, Rani R. 2022. Microbial decolorization of Reactive Black 5 dye by Bacillus albus DD1 isolated from textile water effluent: kinetic, thermodynamics & decolorization mechanism. Heliyon, 8(2): e08834. doi: 10.1016/j.heliyon.2022.e08834
Thanavel, M., Bankole, P. O., Kadam, S., Govindwar, S. P., Sadasivam, S. K. 2019. Desulfonation of the textile azo dye Acid Fast Yellow MR by newly isolated Aeromonas hydrophila SK16. Water Resour Ind. 22: 100116. https://doi: 10.1016/j.wri.2019.100116
Torres E. 2020. Biosorption: A Review of the Latest Advances. Processes, 8(12): 1584. doi: 10.3390/pr8121584
Velusamy S, Roy A, Sundaram S, Kumar Mallick T. 2021. A review on heavy metal ions and containing dyes removal through graphene oxide?based adsorption strategies for Textile Wastewater Treatment. Chem. Rec. 21(7): 1570–1610. doi: 10.1002/tcr.202000153
Victor H, Ganda V, Kiranadi B, Pinontoan R. 2020. Metabolite identification from biodegradation of Congo red by Pichia sp.. KnE Life Sci. doi: 10.18502/kls.v5i2.6443
Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, Singh RS. 2018. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 253: 355–367. doi: 10.1016/j.biortech.2018.01.029.

Most read articles by the same author(s)

<< < 1 2