Predicting the current and future distributions of Pinus merkusii in Southeast Asia under climate change

##plugins.themes.bootstrap3.article.main##

MUHAMMAD NUR SULTON
DEVI MAYANG AURINA
FARHAN MUHAMMAD
FARIZ PRADHANA ADIL FADZILAH
ZAHRA HANUN
MUHAMMAD INDRAWAN
SUGENG BUDIHARTA
JATNA SUPRIATNA
ILYAS NURSAMSI
AHMAD DWI SETYAWAN

Abstract

Abstract. Sulton MN, Aurina DM, Muhammad F, Fadzilah FPA, Hanun Z, Indrawan M, Budiharta S, Supriatna J, Nursamsi I, Setyawan AD. 2024. Predicting the current and future distributions of Pinus merkusii in Southeast Asia under climate change. Biodiversitas 25: 1135-1143. Pinus merkusii Jungh. Et de Vriese is a native pine species of Southeast Asia with primary distribution in Indonesia, especially in the mountainous areas of northern Sumatra. The P. merkusii has an important role in the forest ecosystem including maintaining ecosystem stability, reducing soil erosion, and providing habitat for various types of flora and fauna. Climate change is expected to affect the growth, development and distribution of plants, so this study aims to predicting the current dan future distribution of P. merkusii in Southeast Asia under climate change. We used Maxent and Geographic Information System (GIS), which incorporated bioclimatic, edaphic, and UVB radiation variables, to predict the suitable areas of P. merkusii under current and future climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) and three time periods (2030, 2050, and 2080). Our findings indicate that compared to current, there will be an increase of suitable areas for P. merkusii in 2030 across all climate scenarios with RCPs 2.6, 4.5, 6.0, and 8.5 represent 9.53%, 9.66%, 9.73%, and 9.91% of Southeast Asia terrestrial area, respectively. In 2050, such increase will continue under all climate scenarios with RCP 4.5 has the largest proportion of suitable area (10.39%). However, in 2080, the suitable areas are likely to reduce compared with 2050 with RCPs 2.6, 4.5, 6.0, and 8.5 have a percentage of 9.21%, 9.69%, 10.29%, and 9.81%, respectively. Our predictions showed that there will be a geographical shift of suitable area of P. merkusii into higher elevation and low latitude, migrating southeastward. Our findings about the potential future distribution of P. merkusii might be used as a reference for cultivation according to predicted suitable areas in the future.

##plugins.themes.bootstrap3.article.details##

References
Adalina Y, Nurrochmat DR, Darusman D, Sundawati L. 2014. Harvesting of non-timber forest products by the local communities in Mount Halimun-Salak National Park, West Java, Indonesia. Jurnal Manajemen Hutan Tropika 20 (2): 103-111. DOI: 10.7226/jtfm.20.2.103.
Alhamd L, Rahajoe JS. 2013. Species composition and above ground biomass of a pine forest at Bodogol, Gunung Gede Pangrango National Park, West Java. J Trop Biol Conserv 10: 43-49. DOI: 10.51200/jtbc.v10i0.253.
Antúnez P, Suárez-Mota ME, Valenzuela-Encinas C, Ruiz-Aquino F. 2018. The potential distribution of tree species in three periods of time under a climate change scenario. Forests 9 (10): 628. DOI: 10.3390/f9100628.
Beckmann M, Václavík T, Manceur AM, Šprtová L, von Wehrden H, Welk E, Cord AF. 2014. glUV: A global UV-B radiation dataset for macroecological studies, Methods Ecol Evol 5: 372-383. DOI: 10.1111/2041-210X.12168.
Bouderbala I, Labadie G, Be´land J-M, Tremblay JA, Boulanger Y, He´bert C, Desrosiers P, Allard A, Fortin D. 2023. Long-term effect of forest harvesting on boreal species assemblages under climate change. PLOS Clim 2 (3): e0000179. DOI: 10.1371/ journal.pclm.0000179.
Brown JL. 2014. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5 (7): 694-700. DOI: 10.1111/2041-210X.12200.
Brown, JL, Bennett, JR, Prancis, CM. 2017. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ. 5: 4095. DOI: 10.7717/peerj.4095.
Dalya N, Yuniar F, Muin AVF. 2021. Analysis of the farmers’ income for pine tappers (Pinus merkusii) koakan method at KPH Mamasa Tengah. IOP Conf Ser: Earth Environ Sci 870 (1): 012035. DOI: 10.1088/1755-1315/870/1/012035.
Duan X, Li J, Wu S. 2022. MaxEnt modeling to estimate the impact of climate factors on distribution of Pinus densiflora. Forests 13: 402. DOI: 10.3390/f13030402.
Fick SE, Hijmans RJ. 2017. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Intl J Climatol 37 (12): 4302-4315. DOI: 10.1002/joc.5086.
Global Biodiversity Information Facility (GBIF). 2023. GBIF Occurrence of Pinus merkusii. DOI: 10.15468/dl.pfyfmc
Gray SB, Brady SM. 2016. Plant developmental responses to climate change. Dev Biol 419: 64-77. DOI: 10.1016/j.ydbio.2016.07.023.
Grote PJ, Srisuk P. 2021. Fossil Pinus from the cenozoic of Thailand. Rev Palaeobot Palynol 295: 1-12. DOI: 10.1016/j.revpalbo.2021.104501.
Hama AA, Khwarahm NR. 2023. Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: range overlap and implications for conservation. Ecol Inf 73: 101930. DOI: 10.1016/j.ecoinf.2022.101930.
Hara M, Hoàng TT, Ti?n TV, Ohsawa M. 2021. Composition and structure of mountain forests containing two tropical pines, Pinus krempfii and Pinus dalatensis, on the Da Lat Plateau, southern Vietnam. J Trop Ecol 37 (2): 51-63. DOI: 10.1017/S0266467421000092.
Hartiningtias D, Fule PZ, Gunawan AA. 2020. Wildfire effects on forest structure of Pinus merkusii in Sumatra, Indonesia. For Ecol Manag 457: 117660. DOI: 10.1016/j.foreco.2019.117660.
He XH, Si JH, Zhu L, Zhou DM, Zhao CY, Jia B, Wang CL, Qin J, Zhu XL. 2023. Modeling habitat suitability of Hippophae rhamnoides L. using MaxEnt under climate change in China: A case study of H. r. sinensis and H. r. turkestanica. Front For Glob Change 5: 1095784. DOI: 10.3389/ffgc.2022.1095784.
Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagoti? A et al. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748DOI: 10.1371/journal.pone.0169748.
Heyne K. 1987. Tumbuhan Berguna Indonesia. Terjemahan: Badan Litbang Kehutanan Jakarta. Jilid II dan III. Cetakan kesatu. Yayasan Sarana Wana Jaya, Jakarta. [Indonesian]
Imanuddin R, Hidayat A, Rachmat HH, Turjaman M, Pratiwi, Nurfatriani F, Indrajaya Y, Susilowati A. 2020. Reforestation and sustainable management of Pinus merkusii forest plantation in Indonesia: A review. Forests 11: 121235. DOI: 10.3390/f11121235.
IUCN (International Union for Conservation of Nature and Natural Resources). 2006. The IUCN Red List of Threatened Species. http://www.iucnredlist.org.
Kaky E, Nolana V, Alatawia A, Gilbert F. 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol Inform 60: 101150. DOI: 10.1016/j.ecoinf.2020.101150.
Khairunnisa H, Dewi MAK, Faqiih MAH, Putrayuda MR, Nugroho GD, Indrawan M, Sutarno, Sugiyarto, Sunarto, Supriatna J, Nursamsi I, Gunawan, Pradhan P, Setyawan AD.2023. Prediction of potential climate change impacts on the geographic distribution shift of Casuarina junghuhniana and C. equisetifolia in Southeast Asia. Biodiversitas 24: 6360-6371. DOI: 10.13057/biodiv/d241161.
Khanum R, Mumtaz AS, Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica 49: 23-31. DOI: 10.1016/j.actao.2013.02.007.
Lukmandaru G, Amri S, Sunarta S, Listyanto T, Pujiarti R, Widyorini R. 2020. Oleoresin yield of Pinus merkusii trees from East Banyumas. IOP Conf Ser: Earth Environ Sci 449 (1): 012024. DOI: 10.1088/1755-1315/449/1/012024.
Masendra, Purba BAV, Lukmandaru G. 2021. An evaluation of the antifungal and antioxidant activity of Pinus merkusii bark ethyl acetate extract. Jurnal Ilmu Kehutanan 15 (1): 102-110. DOI: 10.22146/jik.v15i1.149.
McLaughlin BC, Ackerly DD, Klos PZ, Natali J, Dawson TE, Thompsom SE. 2017. Hydrologic refugia, plants, and climate change. Glob Change Biol 23 (8): 1-21. DOI: 10.1111/gcb.13629.
Melinda V, Andini R, Yanti LA. 2022. Analisis morfologi Pinus (Pinus merkusii Jungh. Et De Vriese) studi kasus: Laut Tawar dan Linge, Aceh Tengah. Jurnal Ilmiah Mahasiswa Pertanian 7 (2): 766-804. DOI: 10.17969/jimfp.v7i2.20427. [Indonesian]
Mohan S, Bhaskaran PK. 2019. Evaluation of CMIP5 climate model projections for surface wind speed over the Indian Ocean region. Clim Dyn 53: 5415-5435. DOI: 10.1007/s00382-019-04874-2.
Mukrimin M, Ghiffary MI, Anshari MF, Gusmiaty G, Restu M. 2021. Dynamic of soil properties under an exotic pine (Pinus sp.) species growing in Bantaeng Regency. IOP Conf Ser: Earth Environ Sci 807 (2): 022043. DOI: 10.1088/1755-1315/807/2/022043.
Mustaqim WA. 2021. Pinus merkusii Jungh. & de Vriese Pinaceae. In: Franco FM (eds). Ethnobotany of the Mountain Regions of Southeast Asia. Ethnobotany of Mountain Regions. Springer, Cham. DOI: 10.1007/978-3-030-38389-3_177.
Negari SIT, Ningtyas SRA, Hanun Z, Sulton MN, Kusumaningrum L, Indrawan M, Sugiyarto, Sutomo, Setyawan AD. 2023. Agroforestry suitability evaluation using remote sensing in Jatiyoso Sub-district, Karanganyar District, Central Java, Indonesia. Biodiversitas 24: 6761-6769. DOI: 10.13057/biodiv/d241239.
Ng’awe P, Chungu D, Tailoka F. 2021. Data for modeling the height and diameter of Pinus merkusii and Pinus michoacana in Zambia. Data Brief 38: 107444. DOI: 10.1016/j.dib.2021.107444.
Numata S, Yamaguchi K, Shimizu M, Sakurai G, Morimoto A, Alias N, Azman NZN, Hosaka T, Satake A. 2022. Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia. Comm Biol 5: 311. DOI: 10.1038/s42003-022-03245-8.
Parmesan C, Hanley ME. 2015. Plants and climate change: Complexities and surprises. Ann Bot 116: 849-864. DOI: 10.1093/aob/mcv169.
Pecchi M, Marchi M, Moriondo M, Forzieri G, Ammoniaci M, Bernetti I, Bindi M, Chirici G. 2020. Potential impact of climate change on the forest coverage and the spatial distribution of 19 key forest tree species in Italy under RCP4.5 IPCC trajectory for 2050s. Forests 11 (9): 934. DOI: 10.3390/f11090934.
Penn CJ, Camberato JJ. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9 (6): 120. DOI: 10.3390/agriculture9060120.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026.
Phillips SJ, Dudik M. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31: 161-175. DOI: 10.1111/j.0906-7590.2008.5203.x.
Prayogo C, Sholehuddin N, Putra EZHS, Rachmawati R. 2019. Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. J Degrad Min Lands Manag 6 (3): 1727-1736. DOI: 10.15243/jdmlm.2019.063.1727.
Rahmawaty, Frastika S, Rauf A. 2019. Spatial analysis for Pinus merkusii land suitability at agroforestry land in Telagah Village Sumatera Utara Indonesia. IOP Conf Ser: Mater Sci Eng 593 (1): 012017. DOI: 10.1088/1757-899X/593/1/012017.
Ramadhani F, Girsang E, Florenly. 2021. The bioactive of Pinus merkusii needle and bark extract as antioxidant and antiaging. Jurnal Kimia dan Pendidikan Kimia 6 (1): 78-88. DOI: 10.20961/jkpk.v6i1.45371.
Ritung S, Nugroho K, Mulyani A, Suryani E. 2011. Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian. Edisi Revisi 2011. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor. [Indonesian]
Sadili A. 2015. Autekologi pertumbuhan Pinus (Pinus merkusii Jungh. Et De Vriese) paska erupsi di Gunung Galunggung, Kabupaten Tasikmalaya-Jawa Barat. Jurnal Ilmu-Ilmu Hayati 14 (3): 241-248. [Indonesian]
Sallata MK. 2013. Pinus (Pinus merkusii Jungh et de Vriese) dan keberadaannya di Kabupaten Tana Toraja, Sulawesi Selatan. Info Teknis EBONI 10 (2): 85-98. [Indonesian]
Sandri Y, Maideliza T, Masyurdin, Febriamansyah R. 2016. Kajian anatomi kayu pada tiga ekotipe Pinus merkusii Sumatera dan potensinya sebagai indikator perubahan iklim. Jurnal Metamorfosa 3 (2): 103-111. [Indonesian]
Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Sunarto, Pradan P, Budiharta S, Pitoyo A, Suhardono S, Setyono P, Indrawan M. 2021. Projecting expansion range of Selaginella zollingeriana in the Indonesian archipelago under future climate conditions. Biodiversitas 22: 2088-2103. DOI: 0.13057/biodiv/d220458.
Setyawan AD, Supriatna J, Nisyawati, Sutarno, Sugiyarto, Nursamsi I. 2018. Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas 19: 1960-1977. DOI: 10.13057/biodiv/d190548.
Siregar UJ, Diputra IMMM. 2013. Keragaman genetik Pinus merkusii Jungh. et de Vriese strain Tapanuli berdasarkan penanda mikrosatelit. Jurnal Silvikultur Tropika 4 (2): 88-99. [Indonesian]
Sitompul H. 2019. Analisis vegetasi tumbuhan bawah pada tegakan alam Pinus merkusii Jungh et de Vriese strain Tapanuli di Kabupaten Tapanuli Utara, Provinsi Sumatera Utara. Departemen Konservasi Sumberdaya Hutan Fakultas Kehutanan Universitas Sumatera Utara, Medan. [Indonesian]
Sulton MN, Putri NRA, Nugraheni RS, Afifah RN, Fadilah RN, Indrawan M, Kusumaningrum L, Sutarno, Sunarto, Sugiyarto, Pradhan P, Setyawan AD. 2023. Estimating carbon storage using remote sensing in the Selo Resort forest area of Mount Merbabu National Park, Central Java, Indonesia. Biodiversitas 24: 6264-6270. DOI: 10.13057/biodiv/d241149.
Wang F, Yuan X, Sun Y, Liu Y. 2024. Species distribution modeling based on MaxEnt to inform biodiversity conservation in the Central Urban Area of Chongqing Municipality. Ecol Indic 158: 111491. DOI: 10.1016/j.ecolind.2023.111491.
Wang W, Tang X, Zhu Q, Pan K, Hu Q, He M, Li J. 2014. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China. PLoS ONE 9 (11): e111587. DOI: 10.1371/journal.pone.0111587.
Wijayanto A, Dumarcay S, Charbonnier CG, Sari RK, Syafii W, Gerardin P. 2015. Phenolic and lipohilic extractive in Pinus merkusii Jungh. Et de Vries knots and stemowood. Ind Crops Prod 69: 466-471. DOI: 10.1016/j.indcrop.2015.02.061.
Woodin SA, Hilbish TJ, Helmuth B, Jones SJ, Wethey DS. 2013. Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail. Ecol Evol 3 (10): 3334-3346. DOI: 10.1002/ece3.680.
Yang XQ, Kushwaha SPS, Saran S, Xuc J, Roy PS. 2013. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51: 83-87. DOI: 10.1016/j.ecoleng.2012.12.004.
Yoon S, Lee WH. 2021. Methodological analysis of bioclimatic variable selection in species distribution modeling with application to agricultural pests (Metcalfa pruinosa and Spodoptera litura). Comput Electron Agric 190: 106430. DOI: 10.1016/j.compag.2021.106430.
Zhang J, Hu Y, Zhu C, Flogel S, Fang X, Sun J. 2023a. Modeling The effects of global cooling and the Tethyan Seaway closure on North African and South Asian climates during the middle miocene climate transition. Palaeogeogr Palaeoclimatol Palaeoecol 619: 111541. DOI: 10.1016/j.palaeo.2023.111541.
Zhang K, Yao L, Meng J, Tao J. 2018. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci Total Environ 634: 1326-1334. DOI: 10.1016/j.scitotenv.2018.04.112.
Zhang Q, Shen Z, Pokhrel Y, Farinotti D, Singh VP, Xu CY, Wu W, Wang G. 2023b. Oceanic climate changes threaten the sustainability of Asia’s water tower. Nature 615: 87-93. DOI: 10.1038/s41586-022-05643-8.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >>