Antibacterial and antioxidant potential of ethyl acetate extract from Streptomyces AIA12 and AIA17 isolated from gut of Chanos chanos

##plugins.themes.bootstrap3.article.main##

MUHAMMAD ALFID KURNIANTO
HARSI DEWANTARI KUSUMANINGRUM
https://orcid.org/0000-0002-8828-5295
HANIFAH NURYANI LIOE
EKOWATI CHASANAH

Abstract

Abstract. Kurnianto MA, Kusumaningrum HD, Lioe HN, Chasanah E. 2021. Antibacterial and antioxidant potential of ethyl acetate extract from Streptomyces AIA12 and AIA17 isolated from gut of Chanos chanos. Biodiversitas 22: 3196-3206. Streptomyces has been recognized as a promising and productive source of antibacterial and antioxidant compounds. The phenotypic and genomic characterizations indicated AIA12 and AIA17 are closely related to the S. globisporus ARGB01 and S. misionensis S1-SC15, respectively. Incubation on yeast-malt extract broth for nine days (AIA12) and 11 days (AIA17) proved to be the best growth medium and optimum antibacterial production time for these two strains. Crude-extract of extracellular secondary metabolites, obtained by ethyl acetate extraction, demonstrated broad-spectrum inhibitory activity against Pseudomonas aeruginosa InaCC B52, Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 10876, Escherichia coli ATCC 25922, Salmonella Typhimurium ATCC 14028, and Listeria monocytogenes with minimum inhibitory and minimum bactericidal concentrations from 2.5 to 0.31 and 5.0 to 0.31 mg mL-1, respectively. Evaluation of antioxidant showed AIA17 crude-extract had moderate DPPH scavenging and antioxidant activities of 65.122% ± 0.56 and 28.178 ± 0.24 mg ascorbic acid equivalent antioxidant capacity (AEAC g-1), respectively. The identification of compounds through profiling with RP-HPLC showed optimum absorbance at 210 and 214 nm, which showed the presence of peptide groups in the constituent compounds' molecular structure. These findings indicate that Chanos chanos-derived Streptomyces produces valuable bioactive compounds with various promising biological activities.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Aziz SH, Awady MEE, Nasr-Eldin MA, Ibrahim HMM, Al Bahnasy ME. 2019. Production and assessment of antioxidant activity of exopolysaccharide from marine Streptomyces globisporus BU2018. Egypt. J. Bot. 59(3):645–655.
Abdelghani T. 2017. Production of antibacterial and antifungal metabolites by s.albovinaceus strain no.10/2 and media optimization. Am. Int. J. Biol. 3(10):197–203..
Andayani DGS, Sukandar U, Sukandar EY, Adnyana IK. 2015. Antibacterial, antifungal and anticancer activity of five strains of soil microorganisms isolated from tangkuban perahu mountain by fermentation. HAYATI J. Biosci. 22(4):186–190.
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, et al. 2014. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30(1):108–160.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6(2):71–79.
Bernal MG, Campa-córdova ÁI, Saucedo PE, González MC. 2015. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet. World. 8:170–176.
Cerny G. 1978. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 5(2):113–122.
Choi U, Lee CR. 2019. Antimicrobial agents that inhibit the outer membrane assembly machines of gram-negative bacteria. J. Microbiol. Biotechnol. 29(1):1–10.
Claesen J, Bibb M. 2010. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc. Natl. Acad. Sci.. 107(37):16297–16302.
Claesen J, Bibb MJ. 2011. Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350. J. Bacteriol. 193(10):2510–2516.
Davelos AL, Xiao K, Flor JM, Kinkel LL. 2004. Genetic and phenotypic traits of Streptomycetes used to characterize antibiotic activities of field-collected microbes. Can. J. Microbiol. 50(2):79–89.
Dholakiya RN, Kumar R, Mishra A, Mody KH, Jha B. 2017. Antibacterial and antioxidant activities of novel actinobacteria strain isolated from Gulf of Khambhat, Gujarat. Front. Microbiol. 8(DEC):1–16..
Djinni I, Defant A, Kecha M, Mancini I. 2014. Metabolite profile of marine-derived endophytic Streptomyces sundarbansensis WR1L1S8 by liquid chromatography-mass spectrometry and evaluation of culture conditions on antibacterial activity and mycelial growth. J. Appl. Microbiol. 116(1):39–50.
Donelli G, Vuotto C, Mastromarino P. 2013. Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism. Microb. Ecol. Heal. Dis. 24(0):1–8.
Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MAM, Teplow DB, Sears J, Maranta M, et al. 2004. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology. 150(4):785–793.
Al Farraj DA, Varghese R, Vágvölgyi C, Soliman Elshikh M, Alokda AM, Hossam Mahmoud A. 2020. Antibiotics production in optimized culture condition using low cost substrates from Streptomyces sp. AS4 isolated from mangrove soil sediment. J. King Saud Univ. - Sci. 32(2):1528–1535.
Farris MH, Duffy C, Findlay RH, Olson JB. 2011. Streptomyces scopuliridis sp . nov ., a bacteriocin- producing soil streptomycete. Int. J. Syst. Evol. 61:2112–2116.
Felsentein J. 1985. Confidence Limits on Phylogenies?: An Approach Using the Bootstrap. Evolution. 39(4):783–791.
Flórez L V., Biedermann PHW, Engl T, Kaltenpoth M. 2015. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32(7):904–936.
Gebreyohannes G, Moges F, Sahile S, Raja N. 2013. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pac. J. Trop. Biomed. 3(6):426–435.
Hasani A, Kariminik A, Isaazadeh K. 2014. Streptomycetes?: Characteristics and Their Antimicrobial Activities. Int. J. Adv. Biol. Biomed. Res. 2(1):63–75.
Hernández-Saldaña OF, Barboza-Corona JE, Bideshi DK, Casados-Vázquez LE. 2020. New bacteriocin-like substances produced by Streptomyces species with activity against pathogens. Folia Microbiol. (Praha). 65(4):669–678.
Huang D, Boxin OU, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53(6):1841–1856.
Huo L, Rachid S, Stadler M, Wenzel SC, Müller R. 2012. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem. Biol. 19(10):1278–1287.
James NC, Cowley PD, Whitfield AK, Lamberth SJ. 2007. Fish communities in temporarily open/closed estuaries from the warm- and cool-temperate regions of South Africa: A review. Rev. Fish Biol. Fish. 17(4):565–580.
Janardhan A, Kumar AP, Viswanath B, Saigopal DVR, Narasimha G. 2014. Production of Bioactive Compounds by Actinomycetes and Their Antioxidant Properties. Biotechnol. Res. Int. 2014:1–8.
Kumala T, Jayuska A, Ardiningsih P. 2015. Uji Aktivitas Antimikroba dari Actinomycetes 9ISP1 dari Spons Asal Perairan Pulau Randayan. J. Kim. Khatulistiwa. 4(2):30–36.
Kurnianto MA, Kusumaningrum HD, Lioe HN. 2020a. Penapisan Actinobacteria Akuatik Penghasil Antibakteri dari Ikan Bandeng (Chanos chanos) dan Belanak (Mugil cephalus) dengan Metode Double-layer Diffusion. J. Pascapanen dan Bioteknol. Kelaut. dan Perikan. 15(1):1–11.
Kurnianto MA, Kusumaningrum HD, Lioe HN. 2020b. Characterization of Streptomyces Isolates Associated with Estuarine Fish Chanos chanos and Profiling of Their Antibacterial Metabolites-Crude-Extract. Int. J. Microbiol. 2020:1–12.
Lee DR, Lee SK, Choi BK, Cheng J, Lee YS, Yang SH, Suh JW. 2014. Antioxidant activity and free radical scavenging activities of Streptomyces sp. strain MJM 10778. Asian Pac. J. Trop. Med. 7(12):962–967..
Lee LH, Zainal N, Azman AS, Eng SK, Ab Mutalib NS, Yin WF, Chan KG. 2014. Streptomyces pluripotens sp. nov., A bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. Int. J. Syst. Evol. Microbiol. 64(2014):3297–3306.
Lewin G, Carlon C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox brian G, Currie CR. 2017. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu Rev Microbiol. 70(1):235–254..
Manikkam R, Venugopal G, Ramasamy B, Kumar V. 2015. Effect of critical medium components and culture conditions on antitubercular pigment production from novel Streptomyces sp D25 isolated from Thar desert, Rajasthan. J. Appl. Pharm. Sci. 5(6):015–019.
McKee KL. 1995. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. Am. J. Bot. 82(3):299–307.
Messaoudi O, Bendahou M, Benamar I, Abdelwouhid D. 2015. Identification and preliminary characterization of non-polyene antibiotics secreted by new strain of actinomycete isolated from sebkha of Kenadsa, Algeria. Asian Pac. J. Trop. Biomed. 5(6):438–445.
Memarpoor-Yazdi M, Asoodeh A, Chamani JK. 2012. A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J. Funct. Foods. 4(1):278–286.
Naarmann N, Bilgiçer B, Meng H, Kumar K, Steinem C. 2006. Fluorinated interfaces drive self-association of transmembrane ? helices in lipid bilayers. Angew. Chemie - Int. Ed. 45(16):2588–2591..
Nett M, Ikeda H, Moore BS. 2009. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26(11):1362–1384.
Nurkanto A, Agusta A. 2015. Molecular Identification and Morpho-Physiological Characterization of Actinomycetes with Antimicrobial Properties. J. Biol. Indones. 11(2):195–203.
Ökesli A, Cooper LE, Fogle EJ, Van Der Donk WA. 2011. Nine post-translational modifications during the biosynthesis of cinnamycin. J. Am. Chem. Soc. 133(34):13753–13760.
Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP. 2015. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front. Microbiol. 6(APR):1–13.
Pitcher DG, Saunders NA, Owen RJ. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8:151–156.
Praveen V, Tripathi CKM, Bihari V, Srivastava SC. 2008. Production of actinomycin-D by the mutant of a new isolate of Streptomyces sindenensis. Brazilian J. Microbiol. 39(4):689–692.
Pridham TG, Gottlieb D. 1948. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J. Bacteriol. 56(1):107–114.
Priya M, Anandaraj B. 2016. 16S rrna gene characterization of the actinomycete- Streptomyces tuirus, from the estuary region of Ariyankuppam, Puducherry- union territory, India. Int. J. Pharma Bio Sci. 7(4):B816–B821.
Quinn GA, Banat AM, Abdelhameed AM, Banat IM. 2020. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J. Med. Microbiol. 69(8):1040–1048.
Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG. 2012. Examining the fish microbiome: Vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS One. 7(5): e35398
Sharma SK, Chiang LY, Hamblin MR. 2011. Photodynamic therapy with fullerenes in vivo: Reality or a dream? Nanomedicine. 6(10):1813–1825.
Shirling E, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16(3):313–340.d
Singh LS, Sharma H, Talukdar NC. 2014a. Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiol. 14(1):1–13.
Sivalingam P, Hong K, Pote J, Prabakar K. 2019. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int. J. Microbiol. 2019.
Tan LTH, Chan KG, Pusparajah P, Yin WF, Khan TM, Lee LH, Goh BH. 2019. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol. 19(1):1–16.
Tan LTH, Mahendra CK, Yow YY, Chan KG, Khan TM, Lee LH, Goh BH. 2019. Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants. Microbiologyopen. 8(10):1–16.
Taniguchi Y, Shinkai S, Nishi M, Murayama H, Nofuji Y, Yoshida H, Fujiwara Y. 2014. Nutritional biomarkers and subsequent cognitive decline among community-dwelling older Japanese: A prospective study. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 69(10):1276–1283.
Umerska A, Strandh M, Cassisa V, Matougui N, Eveillard M, Saulnier P. 2018. Synergistic effect of combinations containing EDTA and the antimicrobial peptide AA230, an arenicin-3 derivative, on gram-negative bacteria. Biomolecules. 8(4).
Vilches C, Mendez C, Hardisson C, Salas JA. 1990. Biosynthesis of oleandomycin by Streptomyces antibioticus: Influence of nutritional conditions and development of resistance. J. Gen. Microbiol. 136(8):1447–1454.
Zothanpuia, Passari AK, Chandra P, Leo V V., Mishra VK, Kumar B, Singh BP. 2017. Production of potent antimicrobial compounds from Streptomyces cyaneofuscatus associated with fresh water sediment. Front. Microbiol. 8(JAN):1–13