Short Communication: Antimicrobial properties in cloacal fluid of olive ridley sea turtle (Lepidochelys olivacea)

##plugins.themes.bootstrap3.article.main##

RATIH NOVITA PRAJA
ADITYA YUDHANA
WIYANTO HADITANOJO
VIVI OKTAVIANA

Abstract

Abstract. Praja RN, Yudhana A, Haditanojo W, Oktaviana V. 2021. Short Communication: Antimicrobial properties in cloacal fluid of olive ridley sea turtle (Lepidochelys olivacea). Biodiversitas 22: 3671-3676. There were several speculations regarding the main purpose of sea turtle cloacal fluid, such as lubrication during egg deposition, which could help reduce egg speed as they are dropped in nesting sand, or contain antimicrobial properties to protect their eggs from pathogenic microorganisms. However, the exact purpose of this fluid which is mucous-like in consistency remains unknown. This study aimed to identify antimicrobial properties in the cloacal fluid of olive ridley sea turtles. Cloacal fluid samples were collected during nesting season in Banyuwangi City coastal areas, East Java Province, Indonesia. Moreover, the Kirby-Bauer diffusion disk method recorded antimicrobial properties and tested against several bacterial colonies collected from sand in natural nesting chambers. This preliminary study also concluded that antimicrobial properties were recorded when presented against several bacteria colonies from natural nesting sands namely Escherichia coli, Salmonella spp., and Bacillus spp. Furthermore, the present study should be expanded to include other bacteria and fungi colonies. In addition, results from the present study could be used to develop methods in creating antibiotics similar to those found naturally in natural nesting areas to prevent microorganism contamination and globally increase hatchling success, which has a greater impact to support sea turtle conservation efforts as endangered species.

##plugins.themes.bootstrap3.article.details##

References
Abbas F, Hafeez-ur-Rehman M, Ashraf M, Iqbal KJ, Andleeb S, and Khan BA. 2020. Mucus properties of Chinese carp and Indian carp: Physical barrier to pathogens. Iran J Fish Sci. 19(3):1224-1236. DOI: 10.22092/ijfs.2019.119394.0.
Abreu–Grobois FA, Morales-Mérida BA, Hart CE, Guillon J, Godfrey MH, Navarro E, Girondot M. 2020. Recent advances on the estimation of the thermal reaction norm for sex ratios. Peer J. 8:1-28. DOI: 10.7717/peerj.8451.
Adel M, Safari R, Soltanian S, Zorriehzahra MJ, and Esteban MA. 2018. Antimicrobial activity and enzymes on skin mucus from male and female Caspian kutum (Rutilus frisii kutum Kamensky, 1901) specimens. Slov Vet Res. 55(4):235-43. DOI: 10.26873/SVR-440-2018.
Bezy VS, Valverde RA, and Plante CJ. 2015. Olive Ridley Sea Turtle Hatching Success as a Function of the Microbial Abundance in Nest Sand at Ostional, Costa Rica. Plos One. 10(2):1-24. DOI: 10.1371/journal.pone.0118579.
Blasi MF, Migliore L, Mattei D, Rotini A, Thaller MC, and Alduina R. 2020. Antibiotic resistance of Gram-negative bacteria from wild captured Longgerhead Sea Turtles. Antibiotics. 9:162-173. DOI: 10.3390/antibiotics9040162.
Booth DT and Dustan A. 2018. A preliminary investigation into the aerly embryo death syndrome (EEDS) at the world’s largest green turtle rookery. Plos One. 13(4):1-13. DOI: 10.1371/journal.pone.0195462.
Bragadeeswaran S and Thangaraj S. 2011. Hemolytic and antibacterial studies on skin mucus of eel fish, Anguilla anguilla Linnaues, 1758. Asian J Bio Sci. 4(3): 272-276. DOI: 10.3923/ajbs.2011.272.276.
Candan O. and Candan ED. 2020. Bacterial diversity of green turtle (Chelonia mydas) nest environment. Sci Total Environ. 720:1-10. DOI: 10.1016/j.scitotenv.2020.137717.
Caron AGM, Thomas CR, Berry KLE, Motti CA, Ariel E, and Brodie JE. 2018. Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the great barrier reef: validation of a sequential extraction protocol. Mar Pollut Bull. 127:743–751. DOI: 10.1016/j.marpolbul.2017.12.062.
Dash S, Das SK, Samal J, and Thatoi HN. 2018. Epidermal mucus, major determinant in fish health: a review. Iran J Vet Res. 19 (2): 72-81. DOI: 10.22099/ijvr.2018.4849.
Dawson A. 2011. Antibacterial and antifungal properties of loggerhead (Caretta caretta) and flatback (Natator depressus). B.S. Honors Thesis. Griffith University, Gold Coast, AUS.
De Andrés E, Gómara B, González-Paredes D, Ruiz-Martín J, and Marco A. 2016. Persistent organic pollutant levels in eggs of leatherback turtles (Dermochelys coriacea) point to a decrease in hatching success. Chemosphere. 146:354–361. DOI: 10.1016/j.chemosphere.2015.12.021.
Gammill WM, Fites JS, and Rollins-Smith LA. 2012. Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. Dev Comp Immunol. 1:19-27. DOI: 10.1016/j.dci.2011.12.012.
Gifari T, Elfidasari D, and Sugoro I. 2018. The effects of contaminant microorganism towards Chelonia mydas eggs hatchery result in Pangumbahan Green Sea Turtles Conservation, Sukabumi, Indonesia. Biodivers J. 19(4):1207-1212. DOI: 10.13057/biodiv/d190404.
Gleason FH, Allerstorfer M, and Lilje O. 2020. New Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the Fusarium solani complex (FSSC). Mycology. 1:1-11. DOI: 10.1080/21501203.2019.1710303.
Hilles AR, Mahmood S, Kaderi MA, and Hashim R. 2018. Review about the importance of skin mucus from asian swamp eel (Monopterus albus). MOJ Proteom Bioinform. 7(5):152-153. DOI: 10.15406/mojpb.2018.07.00249.
Hoh DZ, Lin YF, Liu WA, Sidique SNM, and Tsai IJ. 2019. Nest microbiota and pathogen abundance impact hatching success in sea turtle conservation. bioRxiv. DOI: 10.1101/776773.
Hoh DZ, Lin YF, Liu WA, Sidique, SNM, and Tsai IJ. 2020. Nest microbiota and pathogen abundance in sea turtle hatcheries. Fungal Ecol. 47:1-11. DOI: 10.1016/j.funeco.2020.100964.
Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, Li H, Xu H, Lao X, and Zheng H. 2019. An update data repository of antimicrobial peptides. Sci data. 6:148-158. DOI: 10.1038/s41597-019-0154-y.
Keene EL. 2012. Microorganism From Sand Cloacal Fluid and Eggs of Lepidochelys olivacea and Standart Testing of Cloacal Fluid Antimicrobial Properties. Master Thesis. Purdue University.
Kumari S, Tyor AK, and Bhatnagar A. 2019. Evaluation of the antibacterial activity of skin mucus of three carp species. Int aquat res. 11:225-239. DOI: 10.1007/s40071-019-0231-z.
Nassar MSM, Hazzah WA, and Bakr WMK. 2019. Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be? J Egypt Public Health Assoc. 94(4):1-5. DOI: 10.1186/s42506-018-0006-1.
Neves MSC, Moura CCM, and Oliveira LG. 2015. Mycobiota from the eggs, nest and stillbirths of Eretmochelys imbricate Linneus 1766 (Testudines: Cheloniidae) in Pernambuco State, Brazil. Afr J Microbiol Res. 9(17):1195-1199. DOI: 10.5897/AJMR2015.7389.
Nurtamin T, Nurman RY, and Hafizah I. 2016. Antibacterial activity of eel (Anguilla spp.) mucus against Salmonella typhi. Indones Biomed J. 8(3):179-182. DOI: 10.18585/inabj.v8i3.231.
Peay KG, Kennedy PG, and Talbot JM. 2016. Dimensions of biodiversity in the earth mycobiome. Microbiome. 14:434-447. DOI: 10.1038/nrmicro.2016.59.
Pelegrini PB, Perseghini del Sarto R, Silva ON, Franco OL, and Grossi-de-Sa MF. 2011. Antibacterial peptides from plants: hat they are and how they probably work. Biochem Res Int. 1: 1-9. DOI: 10.1155/2011/250349.
Phillott A and Parmenter CJ. 2012. Anti-fungal properties of sea turtle cloacal mucus and egg albumen. Marine Turtle Newsletter. 134: 17-21.
Quinn GA, Banat AM, Abdelhameed AM, and Banat IM. 2020. Streptomuces from traditional medicine: sources of new innovation in antibiotic discovery. J Med Microbiol. 69:1040-1048. DOI: 10.1099/jmm.0.001232.
Rafferty AR and Reina RD. 2012. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles. Proc Royal Soc Biol Sci. 279: 2299-2308. DOI: 10.1098/rspb.2012.0100.
Raj VS, Fournier G, Rakus K, Ronsmans M, Ouyang P, Michel CD, Costes B, Farnir F, Leroy B, Wattiez R, Melard C, Mast J, Lieffrig F, and Vanderplasschen A. 2011. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Vet Res. 42(92):1-9. DOI: 10.1186/1297-9716-42-92.
Reverter M, Bontemps NT, Lecchini D, Banaigs B, and Sasal P. 2018. Biological and ecological roles of External fish mucus: A Review. Fishes. 3(41):1-19. DOI: 10.3390/fishes3040041.
Rosado-Rodriguez G and Maldonado-Ramirez SL. 2016. Mycelial fungal diversity associated with the leatherback sea turtle (Dermochelys coriacea) nest from Western Puerto Rico. BioOne. 15(2):265-272. DOI: 10.2744/CCB-1217.1.
Sathoff AE, Velivelli S, Shah DM, and Samac DA. 2019. Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology. 109:402-408. DOI: 10.1094/PHYTO-09-18-0331-R.
Smyth CW, Sarmiento-Ramirez JM, Short DPG, Dieguez-Uribeondo J, O’Donnell K, and Geiser DM. 2019. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). Plos. 15(5):1-6. DOI: 10.1371/journal.ppat.1007682.
Somma AD, Moretta A, Cane C, Cirillo A, and Duilio A. 2020. Antimicrobial and antibiofilm peptides. Biomolecules. 10:1-15. DOI: 10.3390/biom10040652.
Soslau G, Spotila JR, Chun A, Yi S, and Weber KT. 2011. Potentially lethal bacteria in leatherback turtle eggs in the wild threaten both turtles and conservationists. FEMS Microbiol Lett. 410: 101-106. DOI: 10.1016/j.jembe.2011.10.018.
Torow N, Marsland BJ, Hornef MW, and Gollwitzer ES. 2017. Neonatal mucosal immunology. Immunology. 10(1):5-17. DOI: 10.1038/mi.2016.81.
Tyor AK and Kumari S. 2016. Biochemical characterization and antibacterial properties of fish skin mucus of fresh water fish, Hypophthalmichthys nobilis. Int J Pharm Pharm Sci. 8(6):132-136.
Vennila R, Kumar KR, Kanchana S, Arumugam M, Vijayalakshmi S, and Balasubramaniam T. 2011. Preliminary investigation on antimicrobial and proteolytic property of the apidermal mucus secretion of marine stringrays. Asian Pac J Trop Biomed. S239-S240. DOI: 10.1016/S2221-1691(11)60162-7.
Vestby LK, Gronseth T, Simm R, and Nesse LL. 2020. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics. 9(59):1-29. DOI: 10.3390/antibiotics9020059.
Vila J, Tauler M, and Grifoll M. 2015. Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol. 33:95–102. DOI: 10.1016/j.copbio.2015.01.006.
Wu Q, Patocka J, and Kuca K. 2018. Insect antimicrobial peptides, a mini review. Toxins. 10:1-17. DOI: 10.3390/toxins10110461

Most read articles by the same author(s)