Imidacloprid degradation by potential soil bacteria isolated from rice fields in Grobogan, Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

MUHAMMAD ALFIYAN HERMAWAN
ARTINI PANGASTUTI
RATNA SETYANINGSIH

Abstract

Abstract. Hermawan MA, Pangastuti A, Setyaningsih R. 2024. Imidacloprid degradation by potential soil bacteria isolated from rice fields in Grobogan, Central Java, Indonesia. Nusantara Bioscience 16: 284-291. Imidacloprid a widely used pesticide is known for its polar nature, resistance to evaporation, and persistence in soil. When concentrations exceed environmental thresholds, imidacloprid can act as a pollutant, disrupting ecosystems, altering soil pH, and decreasing soil fertility. This study aimed to isolate and identify soil bacteria from rice fields capable of degrading imidacloprid and to highlight their potential role in bioremediation. Isolated bacteria are identified based on morphological characteristics, their ability to degrade imidacloprid and through molecular tests using 16S rRNA. Four bacterial colonies were obtained from the isolation results with different morphological variations. The degradation test results showed that the isolates were able to grow in media containing imidacloprid and were able to reduce imidacloprid by 26.66-31.75%. Based on 16S rRNA gene analysis, isolate IT1 was identified as Enterobacterales, IT2 was identified as the Enterobacteriaceae, IT3 as Pectobacterium aroidearum strain CCRMPA670, and IT4 was identified as Bacillus thuringiensis strain FDAARGOS_791.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Akinrinlola RJ, Yuen GY, Drijber RA, Adesemoye AO. 2018. Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Intl J Microbiol 2018: 5686874. DOI: 10.1155/2018/5686874.
Akoijam R, Singh B. 2015. Biodegradation of imidacloprid in sandy loam soil by Bacillus aerophilus. Intl J Environ Anal Chem 95: 730-743. DOI: 10.1080/03067319. 2015.1055470.
Akter S, Hulugalle NR, Jasonsmith J, Strong CL. 2023. Changes in soil microbial communities after exposure to neonicotinoids: A systematic review. Environ Microbiol Rep 15: 431-444. DOI: 10.1111/1758-2229.13193.
Alwi MK, Razie F, Kurnain A. 2023. Hubungan ketersediaan fosfor dan kelarutan Fe pada tanah sawah sulfat masam. Acta Solum 1: 61-67. DOI: 10.20527/actasolum.v1i2.1839. [Indonesian]
Astaykina AA, Streletskii RA, Maslov MN, Belov AA, Gorbatov VS, Stepanov AL. 2020. The impact of pesticides on the microbial community of Agrosoddy-Podzolic soil. Eur Soil Sci 53: 696-706. DOI: 10.1134/S1064229320050038.
Bandeira FO, Lopes APR, Hennig TB, Toniolo T, Natal-da-Luz T, Baretta D. 2020. Effect of temperature on the toxicity of imidacloprid to Eisenia andrei and Folsomia candida in tropical soils. Environ Pollut 267: 115565. DOI: 10.1016/j.envpol.2020.115565.
Bhattacherjee AK, Garg N, Shukla PK, Singh B, Vaish S, Dikshit A. 2020. Bacterial bioremediation of imidacloprid in mango orchard soil by Pseudomonas mosselii Strain NG1. Intl J Curr Microbiol Appl Sci 9: 1150-1159. DOI: 10.20546/ijcmas.2020.910.138.
Church DL, Cerutti L, Gürtler A, Griener T, Zelazny A, Emler S. 2020. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin Microbiol Rev 33: e00053-19. DOI: 10.1128/CMR.00053-19.
Coleman NV, Mattes TE, Gossett JM, Spain JC. 2002. Biodegradation of cis-dichloroethene as the sole carbon source by a ?-proteobacterium. Appl Environ Microbiol 6: 2726-2730. DOI: 10.1128/AEM.68.6.2726-2730.2002.
Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Farrow JAE. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Intl J Syst Evol Microbiol 44: 812-826. DOI: 10.1099/00207713-44-4-812.
Cyco? M, Seget PZ. 2015. Biochemical and microbial soil functioning after application of the insecticide imidacloprid. J Environ Sci 27: 147-158. DOI: 10.1016/j.jes.2014.05.034.
Erguven GO, Demirci U. 2021. Using Ochrobactrum thiophenivorans and Sphingomonas melonis for bioremediation of imidacloprid. Environ Technol Innov 21: 101236. DOI: 10.1016/j.eti.2020.101236.
Ferreira L, Rosales E, Danko AS, Sanromán MA, Pazos MM. 2016. Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf Environ Prot 101: 19-26. DOI: 10.1016/j.psep.2015.05.003.
Gangola S, Joshi S, Kumar S, Sharma B, Sharma A. 2021. Differential proteomic analysis under pesticides stress and normal conditions in Bacillus cereus 2D. PLoS One 16 (8): e0253106. DOI: 10.1371/journal.pone.0253106.
Gao Y, Liu M, Zhao X, Zhang X, Zhou F. 2021. Paracoccus and Achromobacter bacteria contribute to rapid biodegradation of imidacloprid in soils. Ecotoxicol Environ Saf 225: 112785. DOI: 10.1016/j.ecoenv.2021.112785.
Gautam P, Dubey KS. 2022. Biodegradation of imidacloprid: Molecular and kinetic analysis. Bioresour Technol 350: 126915. DOI: 10.1016/j.biortech.2022.126915.
Gonzalez JM, Aranda B. 2023. Microbial growth under limiting conditions-future perspectives. Microorganisms 11: 1641. DOI: 10.3390/microorganisms11071641.
Gupta M, Mathur S, Sharma TK, Rana M, Gairola A, Navani NK. 2016. A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J Hazard Mater 301: 250-258. DOI: 10.1016/j.jhazmat.2015.08.055.
Hu G, Zhao Y, Liu B, Song F, You M. 2013. Isolation of an indigenous imidacloprid-degrading bacterium and imidacloprid bioremediation under simulated in situ and ex situ conditions. J Microbiol Biotechnol 23: 1617-1626. DOI: 10.4014/jmb.1305.05048.
Irfan M, Munir H, Ismail H. 2021. Moringa oleifera gum based silver and zinc oxide nanoparticles: Green synthesis, characterization and their antibacterial potential against MRSA. Biomater Res 25: 17. DOI:10.1186/s40824-021-00219-5.
Jõers A, Liske E, Tenson T. 2020. Dividing subpopulation of Escherichia coli in stationary phase. Res Microbiol 171: 153-157. DOI: 10.1016/j.resmic.2020.02.002.
McCabe KM, Zhang YH, Huang BL, Wagar EA, McCabe ER. 1999. Bacterial species identification after DNA amplification with a universal primer pair. Mol Genet Metab 66 (3): 205-211. DOI: 10.1006/mgme.1998.2795.
Mishra S, Singh SN, Pande V. 2014. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol 164: 299-308. DOI: 10.1016/j.biortech.2014.04.076.
Mohammed YM, Badawy MEI. 2017. Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus Aspergillus terreus YESM3. J Environ Sci Health 52: 752-761. DOI: 10.1080/03601234.2017.1356666.
Obayori OS, Ashade AO, Salam LB, Adeyemo AC, Oladejo SO, Abanikannda ON, Oyebade AE. 2024. Heavily polluted mechanic workshop soil and its phenanthrene-degrading Bacillus thuringiensis. The Microbe 4: 100104. DOI: 10.1016/j.microb.2024.100104.
Pang S, Lin Z, Zhang Y, Zhang W, Alansary N, Mishra S, Bhatt P, Chen S. 2020. Insights into the toxicity and degradation mechanisms of imidacloprid via physicochemical and microbial approaches. Toxic 8 (3): 65. DOI: 10.3390/toxics8030065.
Putri SNS, Bari IN, Wilar G, Ridho A. 2021. Imidakloprid dalam formulasi insektisida. Gunung Djati Conf Ser 6: 298-307. [Indonesian]
Risna YK, Harimurti SSH, Wihandoyo W, Widodo W. 2022. Kurva pertumbuhan isolat bakteri asam laktat dari saluran pencernaan itik lokal asal Aceh. Indones J Anim Sci 24: 1-7. DOI:10.25077/jpi.24.1.1-7.2022. [Indonesian]
Rossmann S, Dees MW, Perminow J, Meadow R, Brurberg MB. 2018. Soft rot Enterobacteriaceae are carried by a large range of insect species in potato fields. Appl Environ Microbiol 84: e00281-18. DOI: 10.1128/AEM.00281-18.
Sabourmoghaddam N, Zakaria MP, Omar D. 2015. Evidence for the microbial degradation of imidacloprid in soils of Cameron highlands. J Saudi Soc Agric Sci 14: 182-188. DOI: 10.1016/j.jssas.2014.03.002.
Sharma T, Rajor A, Toor AP. 2014. Degradation of imidacloprid in liquid by Enterobacter sp. Strain ATA1 using co-metabolism. Bioremediat J 18: 227-235. DOI:1 0.1080/10889868.2014.918575.
Shetti A, Kaliwal BB, Kaliwal RB. 2021. Study on imidacloprid induced intoxication and its biodegradation by soil isolate Bacillus weihenstephanensis. Microbiol Biotechnol 4: 54-66. DOI: 10.9734/bpi/rpmb/v5/2039e.
Talpur FN, Unar A, Bhatti SK, Alsawalha L, Fouad D, Bashir H, Afridi HI, Ataya FS, Jefri OA, Bashir MS. 2023. Bioremediation of neonicotinoid pesticide, imidacloprid, mediated by Bacillus cereus. Bioengineering 10: 961. DOI: 10.3390/bioengineering10080951.
Tiwari S, Tripathi P, Mohan D, Singh RS. 2023. Imidacloprid biodegradation using novel bacteria Tepidibacillus decaturensis strain ST1 in batch and in situ microcosm study. Environ Sci Pollut Res 23: 36-40. DOI: 10.1007/s11356-022-24779-8.
Vu NT, Roh E, Thi TN, Oh CS. 2022. Antibiotic resistance of Pectobacterium Korean Strains Susceptible to the Bacteriophage phiPccP-1. Res Plant Dis 28: 166-171. DOI: 10.5423/RPD.2022.28.3.166.
Yadav DR, Adhikari M, Kim SW, Kim HS, Lee YS. 2021. Suppression of Fusarium Wilt caused by Fusarium oxysporum f. sp. lactucae and growth promotion on lettuce using bacterial isolates. J Microbiol Biotechnol 31: 1241-1255. DOI: 10.4014/jmb.2104.04026.
Yu B, Chen Z, Lu X, Huang Y, Zhou Y, Zhang Q, Wang D, Li J. 2020. Science of the total environment effects on soil microbial community after exposure to neonicotinoid insecticides thiamethoxam and dinotefuran. Sci Total Environ 725: 138328. DOI: 10.1016/j.scitotenv.2020.138328.
Zamule SM, Dupre CE, Mendola ML, Widmer J, Shebert JA, Roote CE, Das P. 2021. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. Ecotoxicol Environ Saf 209: 111814. DOI: 10.1016/j.ecoenv.2020.111814.