Phytochemical analysis and antimicrobial activity of Tamarindus indica extracts against Fusarium oxysporum and Xanthomonas campestris

##plugins.themes.bootstrap3.article.main##

FREDRICK MUTEMBEI GITARI
EUNICE WAMUYU GITHAE
ERIC KIMANI KURIA

Abstract

Abstract. Gitari FM, Githae EW, Kuria EK. 2023. Phytochemical analysis and antimicrobial activity of Tamarindus indica extracts against Fusarium oxysporum and Xanthomonas campestris. Intl J Trop Drylands 7: 73-82. Plant-pathogenic bacteria and fungi are a major threat to biodiversity and food security worldwide. The pathogens are difficult to control using cultural methods and have sometimes acquired resistance to conventional pesticides. This has necessitated the search for more efficient active compounds against them. One promising source of such compounds is tropical-medicinal plants such as Tamarindus indica L. This study first determined the phytochemical composition of T. indica extracts from different parts (leaves, bark, roots, and pods). Then it evaluated in-vitro the antimicrobial activity against plant pathogenic bacteria (Xanthomonas campestris) and fungi (Fusarium oxysporum). Crude extracts were obtained using different solvents (dichloromethane, methanol, and acetone). The analysis revealed the presence of nine pharmaco-active phytochemicals; methanol extracts had the highest concentrations of these phytochemicals. All extracts demonstrated inhibitory effects against F. oxysporum. However, the extracts did not show any antimicrobial effect against X. campestris. There was a significant difference (p<0.05) in the percentage of inhibition of F. oxysporum growth by different extracts. Generally, high growth inhibition was observed in media containing different plant extracts at 250 and 500 ppm concentrations. For acetone extracts, the highest inhibition (71.042%) was induced by root extract at a 250 ppm concentration, whereas for dichloromethane extracts, the highest inhibition (68.811%) was induced by 500 ppm of leaf extract. Methanol extracts from stem recorded the highest inhibition of 86.953% at concentrations of 125 ppm. This was followed by root extracts (75.169% inhibition) at 500 ppm. The T. indica, therefore, has great potential as a source of bio-pesticide for use in integrated pest management of F. oxysporum.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abdallah MS, Muhammad A. 2018. Antibacterial activity of leaves and fruit extract of Tamarindus indica against clinical isolates of Escherichia coli and Shigella at Potiskum Yobe state, Nigeria. J Anal Pharm Res 7 (5): 606-609. DOI: 10.15406/japlr.2018.07.00290.
Abubakar MG, Yerima MB, Zahriya AG, Ukwuani AN. 2010. Acute toxicity and antifungal studies of ethanolic leaves, stem and pulp extract of Tamarindus indica. Res J Pharm Biol Chem Sci 1 (4): 104-111.
Adamu M, Naidoo V, Eloff JN. 2013. Efficacy and toxicity of thirteen plant leaf acetone extracts used in ethnoveterinary medicine in South Africa on egg hatching and larval development of Haemonchus contortus. BMC Vet Res 9 (1): 1-9. DOI: 10.1186/1746-6148-9-38.
Agrios GN. 2005. Plant Pathology 5th Edition. Elsevier Academic Press, Amsterdam.
Agrios GN. 2009. Plant pathogens and disease: General introduction. In: Schaechter M (eds). Encyclopedia of Microbiology (Third Edition). Academic Press, Cambridge. DOI: 10.1016/B978-012373944-5.00344-8.
Al?Hetar MY, Zainal Abidin MA, Sariah M, Wong MY. 2011. Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. J Appl Polym Sci 120 (4): 2434-2439. DOI: 10.1002/app.33455.
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6 (4): 42. DOI: 10.3390/plants6040042.
Ameer K, Shahbaz HM, Kwon JH. 2017. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr Rev Food Sci Food Saf 16 (2): 295-315. DOI: 10.1111/1541-4337.12253.
Awere CA, Githae EW, Gichumbi JM. 2021. Phytochemical analysis and antifungal activity of Tithonia diversifolia and Kigelia africana extracts against Fusarium oxysporum in tomato. Afr J Agric Res 17 (5): 726-732. DOI: 10.5897/AJAR2020.15050.
Azwanida NN. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Intl J Med Aromat Plants 4 (196): 1000196. DOI: 10.4172/2167-0412.1000196.
Bajwa WI, Kogan M. 2004. Cultural practices: Springboard to IPM. In: Koul O, Dhaliwal GS, Cuperus GW (eds). Integrated pest Management: Potential, Constraints and Challenges. CABI Publishing, Wallingford. DOI: 10.1079/9780851996868.0021.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6 (2): 71-79. DOI: 10.1016/j.jpha.2015.11.005.
Barros IBD, Daniel JFDS, Pinto JP, Rezende MI, Braz Filho R, Ferreira DT. 2011. Phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens. Braz Arch Biol Technol 54: 535-541. DOI: 10.1590/S1516-89132011000300015.
Bautista-Baños S, Barrera-Necha LL, Bravo-Luna L, Bermúdez-Torres K. 2002. Antifungal activity of leaf and stem extracts from various plant species on the incidence of Colletotrichum gloeosporioides of papaya and mango fruit after storage. Revista Mexicana de Fitopatología 20 (1): 8-12.
Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai Gl, Jain A. 2011. Tamarindus indica: Extent of explored potential. Pharmacogn Rev 5: 73-81. DOI: 10.4103/0973-7847.79102.
Bharat NK, Sharma J. 2014. Occurrence of Fusarium wilt of tomato under protected conditions in Himachal Pradesh, India. Intl J Bio-Res Stress Manag 5 (2): 285-287. DOI : 10.5958/0976-4038.2014.00569.7.
Biscaia D, Ferreira SRS. 2009. Propolis extracts obtained by low pressure methods and supercritical fluid extraction. J Supercrit Fluids 51 (1): 17-23. DOI: 10.1016/j.supflu.2009.07.011.
Bobis O, Dezmirean DS, Tomos L, Chirila F, Marghitas LA. 2015. Influence of phytochemical profile on antibacterial activity of different medicinal plants against gram-positive and gram-negative bacteria. Appl Biochem Microbiol 51 (1): 113-118. DOI: 10.1134/S0003683815010044.
Bondarczuk K, Piotrowska-Seget Z. 2013. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29 (6): 397-405. DOI: 10.1007/s10565-013-9262-1.
Costerton JW, Ingram JM, Cheng KJ. 1974. Structure and function of the cell envelope of gram-negative bacteria. Bacteriol Rev 38 (1): 87-110. DOI: 10.1128/br.38.1.87-110.1974.
De Caluwé E, Halamová K, Van Damme P. 2010. Tamarindus indica L. a review of traditional uses, phytochemistry and pharmacology. Afr Focus 23 (1): 53-83. DOI: 10.21825/af.v23i1.5039.
Destefano SAL, Almeida IMG, Neto JR, Ferreira M, Balani DM. 2003. Differentiation of Xanthomonas species pathogenic to sugarcane by PCR-RFLP analysis. Eur J Plant Pathol 109 (3): 283-288. DOI: 10.1023/A:1022894907176.
Dinan L, Harmatha J, Lafont R. 2001. Chromatographic procedures for the isolation of plant steroids. J Chromatogr A 935 (1-2): 105-123. DOI: 10.1016/S0021-9673(01)00992-X.
Dissanayake MLMC. 2013. Inhibitory effect of selected medicinal plant extracts on phytopathogenic fungus Fusarium oxysporum (Nectriaceae) Schlecht. Emend. Snyder and Hansen. Ann Res Rev Biol 4: 133-142. DOI: 10.9734/ARRB/2014/5777.
Dita M, Barquero M, Heck D, Mizubuti ES, Staver CP. 2018. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci 2018: 9. DOI: 10.3389/fpls.2018.01468.
Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH. 2014. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophilaaromatica. J Food Drug Anal 22 (3): 296-302. DOI: 10.1016/j.heliyon.2019.e01622.
Dorri M, Hashemitabar S, Hosseinzadeh H. 2018. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug Chem Toxicol 41 (3): 338-351. DOI: 10.1080/01480545.2017.1417995.
Doughari JH. 2006. Antimicrobial activity of Tamarindus indica Linn. Trop J Pharm Res 5 (2): 597-603. DOI: 10.4314/tjpr.v5i2.14637.
El-Siddig K, Gunasena HPM, Prasad BA, Pushpakumara DKNG, Ramana KVR, Vijayanand P, Williams JT. 2006. Tamarind: Tamarindus indica L (Vol. 1): Crops for the Future. University of Southampton, Southampton.
Ericson-Neilsen W, Kaye AD. 2014. Steroids: Pharmacology, complications, and practice delivery issues. Ochsner J 14 (2): 203-207. DOI: 10.1142/9781848168305_0013.
Escalona-Arranz JC, Péres-Roses R, Urdaneta-Laffita I, Camacho-Pozo MI, Rodríguez-Amado J, Licea-Jiménez I. 2010. Antimicrobial activity of extracts from Tamarindus indica L. leaves. Pharmacogn Mag 6 (23): 242-247. DOI: 10.4103/0973-1296.66944.
Estevinho L, Pereira AP, Moreira L, Dias LG, Pereira E. 2008. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 46 (12): 3774-3779. DOI: 10.1016/j.fct.2008.09.062.
Fourie G, Steenkamp ET, Ploetz RC, Gordon TR, Viljoen A. 2011. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect Genet Evol 11 (3): 533-542. DOI: 10.1016/j.meegid.2011.01.012.
Gade RM, Rai M, Lad RS, Shitole AV. 2020. Role of phytochemicals in plant diseases caused by pythium. In: Rai M, Abd-Elsalam KA, Ingle AP (eds). Pythium. CRC Press, Boca Raton. DOI: 10.1201/9780429296406.
Gil A, De La Fuente EB, Lenardis AE, Pereira ML, Suárez SA, Bandoni A, Van Baren C, Lira PDL, Ghersa CM. 2002. Coriander essential oil composition from two genotypes grown in different environmental conditions. J Agric Food Chem 50 (10): 2870-2877. DOI: 10.1021/jf011128i.
Gitonga TK, Githae EW. 2022. Prevalence of green gram fungal diseases in the Eastern part of Kenya. East Afr Agric For J 85 (1 & 2): 13-13.
Gomathi AC, Rajarathinam SX, Sadiq AM. 2017. Phyto chemical screening of aqueous extract of Tamarind (Tamarindus indica L.) Shell. Intl J Basic Appl Res 7 (11): 65-70.
Gumgumjee NM, Khedr A, Hajar AS. 2012. Antimicrobial activities and chemical properties of Tamarindusindica L. leaves extract. Afr J Microbiol Res 6 (32): 6172-6181. DOI: 10.5897/AJMR12.715.
Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, Razzaq A, Aziz N, Makhdoom EUH, Konuk M, Sun T. 2019. Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: An updated review. Molecules 24 (12): 2213. DOI: 10.3390/molecules24122213.
Kalman B, Abraham D, Graph S, Perl-Treves R, Meller Harel Y, Degani O. 2020. Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in Northeastern Israel. Biology 9 (4): 69. DOI: 10.3390/biology9040069.
Kalpana B, Prakash M. 2016. Antibacterial activity of leaf extracts of Euphorbia heterophylla L. and Tamilnadia uliginosa (Retz.) Tirveng. & Sastre against Xanthomonas campestris pv. citri. Intl J Curr Res Biosci Plant Biol 3 (1): 135-138. DOI: 10.20546/ijcrbp.2016.301.015.
Kar M, Chourasiya Y, Maheshwari R, Tekade RK. 2019. Current developments in excipient science: Implication of quantitative selection of each excipient in product development. In: Tekade RK (eds). Basic Fundamentals of Drug Delivery. Academic Press, Cambridge. DOI: 10.1016/B978-0-12-817909-3.00002-9.
Katan J. 2004. Role of cultural practices for the management of soilborne pathogens in intensive horticultural systems. Acta Hortic 635: 11-18. DOI: 10.17660/ActaHortic.2004.635.1.
Kidaha ML, Rimberia FK, Wekesa RK, Kariuki W. 2017. Evaluation of tamarind (Tamarindus indica) utilization and production in eastern parts of Kenya. Asian Res J Agric 6 (2): 1-7. DOI: 10.9734/ARJA/2017/34705.
Kidist B. 2003. Characterization of Xanthomonas campestris pv. musacearum Isolates: Causal Agent of Enset Bacterial Wilt Disease. [Doctoral Dissertation]. Addis Ababa University, Addis Ababa.
Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. 2016. Effects of pesticides on environment. In: Hakeem KR, Akhtar MS, Abdullah SNA (eds). Plant, Soil and Microbes. Springer, Cham. DOI: 10.1007/978-3-319-27455-3_13.
Majekodunmi SO. 2015. Review of extraction of medicinal plants for pharmaceutical research. Merit Res J Med Sci 3: 521-527.
Martins MA, Silva LP, Ferreira O, Schröder B, Coutinho JA, Pinho SP. 2017. Terpenes solubility in water and their environmental distribution. J Mol Liq 241: 996-1002. DOI: 10.1016/j.molliq.2017.06.099.
Maundu P, Tengnas B. 2005. Useful Trees and Shrubs for Kenya. World Agroforestry Centre-Eastern and Central Africa Regional Programme (ICRAF-ECA), Nairobi.
Mbaka JN, Nakato VG, Auma J, Odero B. 2009. Status of banana Xanthomonas wilt in western Kenya and factors enhancing its spread. Afr Crop Sci Conf Proc 9: 673-676.
Meyer ER, Kress JD, Collins LA, Ticknor C. 2014. Effect of correlation on viscosity and diffusion in molecular-dynamics simulations. Phys Rev E 90 (4): 043101. DOI: 10.1103/PhysRevE.90.043101.
Mkandawire AB, Mabagala RB, Guzmán P, Gepts P, Gilbertson RL. 2004. Genetic diversity and pathogenic variation of common blight bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) suggests pathogen coevolution with the common bean. Phytopathology 94 (6): 593-603. DOI: 10.1094/PHYTO.2004.94.6.593.
Moghaddam FM, Farimani MM, Salahvarzi S, Amin G. 2007. Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. Evid-Based Complement Alternat Med 4 (1): 95-98. DOI: 10.1093/ecam/nel065.
Mohammadi A, Mansoori B, Aghapour M, Baradaran B. 2016. Urtica dioica dichloromethane extract induce apoptosis from intrinsic pathway on human Prostate Cancer Cells (PC3). Cell Mol Biol 62 (3): 78-83. DOI: 10.14715/cmb/2016.62.3.13.
Moteriya P, Satasiya R, Chanda S. 2015. Screening of phytochemical constituents in some ornamental flowers of Saurashtra region. J Pharmacogn Phytochem 3 (5): 112-120.
Muok BO, Owuor B, Dawson I, Were J. 2000. The potential of indigenous fruit trees: Results of a survey in Kitui District, Kenya. Agrofor Today 12 (1): 13-16.
Murithi HM, Beed F, Tukamuhabwa P, Thomma BPHJ, Joosten MHAJ. 2016. Soybean production in eastern and southern Africa and threat of yield loss due to soybean rust caused by Phakopsora pachyrhizi. Plant Pathol 65 (2): 176-188. DOI: 10.1111/ppa.12457.
Mustaffa MM, Thangavelu R. 2011, September. Status of Fusarium wilt in India. Acta Hortic 897: 323-329. DOI: 10.17660/ActaHortic.2011.897.44.
Nauman K, Arshad M. 2011. Screening of aqueous methanol plant extracts for their antibacterial activity. Sci Technol Against Microb Pathog 2011: 123-127. DOI: 10.1142/9789814354868_0024.
Nemzer B, Al-Taher F, Abshiru N. 2020. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem 320: 126621. DOI: 10.1016/j.foodchem.2020.126621.
Niu L, Zhang H, Wu Z, Wang Y, Liu H, Wu X, Wang W. 2018. Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PloS One 14 (1): e0202238. DOI: 10.1371/journal.pone.0202238.
Nuñez AMP, Rodríguez GAA, Monteiro FP, Faria AF, Silva JCP, Monteiro ACA, Calvalho CV, Gomes LAA, Souza RM, de Souza JT, Medeiros FHV. 2018. Bio-based products control black rot (Xanthomonas campestris pv. campestris) and increase the nutraceutical and antioxidant components in kale. Sci Rep 8 (1): 1-11. DOI: 10.1038/s41598-018-28086-6.
Nwodo UU, Obiiyeke GE, Chigor VN, Okoh AI. 2011. Assessment of Tamarindus indica extracts for antibacterial activity. Intl J Mol Sci 12 (10): 6385-6396. DOI: 10.3390/ijms12106385.
Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Maestro-Madurga B, Pesquera-Rodriguez A, Ramírez-López C, Lorenzo-Ibarreta L, Torrecilla-Soria J, Villarán-Velasco MC. 2009. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Appl Catal A: Gen 366 (2): 315-324. DOI: 10.1016/j.apcata.2009.07.020.
Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA. 2014. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathogens 10 (10): e1004464. DOI: 10.1371/journal.ppat.1004464.
Oyelana OA, Durugbo EU, Olukanni OD, Ayodele EA, Aikulola ZO, Adewole AI. 2011. Antimicrobial activity of Ficus leaf extracts on some fungal and bacterial pathogens of Dioscorea rotundata from Southwest Nigeria. J Biol Sci 11 (5): 359-366. DOI: 10.3923/jbs.2011.359.366.
Özcan M, Chalchat JC. 2005. Effect of different locations on the chemical composition of essential oils of laurel (Laurus nobilis L.) leaves growing wild in Turkey. J Med Food 8 (3): 408-411. DOI: 10.1089/jmf.2005.8.408.
Padalia H, Moteriya P, Chanda S. 2015. Phytochemical analysis and effect of solvents on antibacterial activity of Tamarindus indica leaf and stem. Intl J Curr Eng Technol 5: 2716-21.
Pal KK, Gardener MB. 2006. Biological control of plant pathogens. Plant Health Instr 2: 1117-1142. DOI: 10.1094/PHI-A-2006-1117-02.
Papazian S, Blande JD. 2020. Dynamics of plant responses to combinations of air pollutants. Plant Biol 22: 68-83. DOI: 10.1111/plb.12953.
Parekh J, Jadeja D, Chanda S. 2005. Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turk J Biol 29 (4): 203-210.
Patel I, Patel V, Thakkar A, Kothari V. 2013. Tamarindus indica (Cesalpiniaceae), and Syzygium cumini (Myrtaceae) seed extracts can kill multidrug resistant Streptococcus mutans in biofilm. J Nat Remed 13 (2): 81-94. DOI: 10.18311/jnr/2013/101.
Paterson DL. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 34 (5): S20-S28. DOI: 10.1016/j.ajic.2006.05.238.
Qiu S, Sun H, Zhang AH, Xu HY, Yan GL, Han Y, Wang XJ. 2014. Natural alkaloids: Basic aspects, biological roles, and future perspectives. Chin J Nat Med 12 (6): 401-406. DOI: 10.1016/S1875-5364(14)60063-7.
Rahimi NNMN, Natrah I, Loh JY, Ranzil FKE, Gina M, Lim SHE, Lai KS, Chong CM. 2022. Phytocompounds as an alternative antimicrobial approach in aquaculture. Antibiotics 11 (4): 469. DOI: 10.3390/antibiotics11040469.
Ramaiah AK, Garampalli RKH. 2015. In vitro antifungal activity of some plant extracts against Fusarium oxysporum f. sp. lycopersici. Asian J Plant Sci Res 5 (1): 22-27.
Rao AS, Kumar AA, Ramana MV. 2015. Tamarind seed processing and by-products. Agric Eng Intl CIGR J 17: 200-204.
Rongai D, Milano F, Sciò E. 2012. Inhibitory effect of plant extracts on conidial germination of the phytopathogenic fungus Fusarium oxysporum. Am J Plant Sci 3 (12): 1693-1698. DOI: 10.4236/ajps.2012.312207.
Satish S, Mohana D, Raghavendra M, Babu S, Raveesha K. 2009. Antibacterial evaluation of some Iranian medicinal plants against some human pathogenic bacteria. Asian J Microbiol Biotech Environ Sci 11: 735-738.
Saxena HO, Soni A, Mohammad N, Choubey SK. 2014. Phytochemical screening and elemental analysis in different plant parts of Uraria picta Desv.: A Dashmul species. J Chem Pharm Res 6 (5): 756-760.
Shenge KC, Mabagala RB, Mortensen CN, Wydra K. 2014. Resistance of Xanthomonas campestris pv. vesicatoria isolates from Tanzania to copper and implications for bacterial spot management. Afr J Microbiol Res 8 (30): 2881-2885. DOI: 10.5897/AJMR2013.5836.
Shuaib M, Ali A, Ali M, Panda BP, Ahmad MI. 2013. Antibacterial activity of resin rich plant extracts. J Pharm Bioallied Sci 5 (4): 265. DOI: 10.4103/0975-7406.120073.
Simon O. 2019. Scaling Up the Production and commercialization of tamarind fruit in Kenya: The missing value chain links. Preprint 2019040295. DOI: 10.20944/preprints201904.0295.v1.
Singh S, Gautam RK, Singh DR, Sharma TVRS, Sakthivel K, Roy SD. 2015. Genetic approaches for mitigating losses caused by bacterial wilt of tomato in tropical islands. Eur J Plant Pathol 143 (2): 205-221. DOI: 10.1007/s10658-015-0690-z.
Srinivas C, Devi DN, Murthy KN, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana SR, Hashem A, Alqarawi AA, Tabassum B, Abd Allah EF, Nayaka SC. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity–A review. Saudi J Biol Sci 26 (7): 1315-1324. DOI: 10.1016/j.sjbs.2019.06.002.
Stéphane FFY, Jules BKJ, Batiha GES, Ali I, Bruno LN. 2021. Extraction of bioactive compounds from medicinal plants and herbs. In: El-Shemy HA (eds). Natural Medicinal Plants. IntechOpen Limited, London. DOI: 10.5772/intechopen.98602.
Tharaka-Nithi County Government. 2016. An Overview of Tharaka-Nithi County. www.kenya-information-guide.com/tharaka-nithi-county.htm
Thieme F, Koebnik R, Bekel T, et al. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187 (21): 7254-7266. DOI: 10.1128/jb.187.21.7254-7266.2005.
Timmermann BN, Steelink C, Loewus FA. 2013. Phytochemical Adaptations to Stress Vol. 18. Springer Science and Business Media, New York.
Tripathi L, Mwangi M, Abele S, Aritua V, Tushemereirwe WK, Bandyopadhyay R. 2009. Xanthomonas wilt: A threat to banana production in East and Central Africa. Plant Dis 93 (5) 440-451. DOI: 10.1094/PDIS-93-5-0440.
Umaru IJ, Umaru HA. 2018. Phytochemical screening and in-vitro activities of dichloromethane leaf extract of Leptadenia hastata (pers.) decne against pathogens. Intl J Vaccines Vaccin 2018a 5 (2) 34-37. DOI: 10.15406/ijvv.2018.05.00099.
Upadhayay V. 2016. Plant Extraction. DOI: 10.13140/RG.2.2.23472.56322.
Vaghasiya Y, Chanda S. 2009. Screening of some traditionally used Indian plants for antibacterial activity against Klebsiella pneumonia. J Herb Med Toxicol 3 (2): 161-164.
Velarde-Félix S, Garzón-Tiznado JA, Hernández-Verdugo S, López-Orona CA, Retes-Manjarrez JE. 2018. Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico. Can J Plant Pathol 40 (2): 238-247. DOI: 10.1080/07060661.2017.1420693.
Velásquez AC, Castroverde CDM, He SY. 2018. Plant–pathogen warfare under changing climate conditions. Curr Biol 28 (10): R619-R634. DOI: 10.1016/j.cub.2018.03.054.
Vidaver AK, Lambrecht PA. 2004. Bacteria as plant pathogens. Plant Health Instr 10. DOI: 10.1094/PHI-I-2004-0809-01.
Wadood A, Ghufran M, Jamal SB, Naeem M, Khan A, Ghaffar R. 2013. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem Anal Biochem 2 (4): 1-4. DOI: 10.4172/2161-1009.1000144.
Warda SAG, Fathia M, Amel O. 2007. Antibacterial activity of Tamarindus indica fruit and Piper nigrum seed. Res J Microbiol 2 (11): 824-30. DOI: 10.3923/jm.2007.824.830.
Wasukira A, Tayebwa J, Thwaites R, Paszkiewicz K, Aritua V, Kubiriba J, Smith J, Grant M, Studholme DJ. 2012. Genome-wide sequencing reveals two major sub-lineages in the genetically monomorphic pathogen Xanthomonas campestris pathovar musacearum. Genes 3 (3): 361-377. DOI: 10.3390/genes3030361.
Wood PJ, Gower DB. 2010. Analysis of progestagens. In: Makin HLJ, Gower DB (eds). Steroid analysis. Springer, Dordrecht. DOI: 10.1023/b135931_7.
Wulff EG, Mguni CM, Mortensen CN, Keswani CL, Hockenhull J. 2002. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur J Plant Pathol 108 (4): 317-325. DOI: 10.1023/A:1015671031906.
Yadav RNS, Agarwala M. 2011. Phytochemical analysis of some medicinal plants. J Phytol 3 (12): 10-14.
Young JA. 2004. Dichloromethane. J Chem Educ 81 (10): 1415. DOI: 10.1021/ed081p1415.
Yuan J, Raza W, Shen Q, Huang Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78 (16): 5942-5944. DOI: 10.1128/AEM.01357-12.
Zhang K, Yuan-Ying S, Cai L. 2013. An optimized protocol of single spore isolation for fungi. Cryptogam Mycol 34 (4): 349-356. DOI: 10.7872/crym.v34.iss4.2013.349.