Modeling climate change impacts under future CCM3 scenario on sorghum (Sorghum bicolor) as an drought resilient crop in tropical arid Lombok Island, Indonesia

##plugins.themes.bootstrap3.article.main##

ANDRIO A. WIBOWO
VITA MEYLANI

Abstract

Abstract. Wibowo AA, Meylani V. 2024. Modeling climate change impacts under future CCM3 scenario on sorghum (Sorghum bicolor) as an drought resilient crop in tropical arid Lombok Island, Indonesia. Intl J Trop Drylands 8: 35-43. The arid ecosystems and drought conditions exacerbated by climate change and rising CO2 levels necessitate the identification of alternative drought-tolerant crops. Sorghum bicolor L. has emerged as a promising option due to its resilience to drought. However, there is dearth of information regarding its future potential distribution, particularly in arid regions like Lombok Island, Indonesia, where sorghum is being considered as a viable alternative to ensure food security. This study employs Maximum Entropy (MaxEnt) modeling, incorporating environmental and bioclimatic variables, along with the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) scenario reflecting doubled CO2 levels, to model the future potential distribution of S. bicolor. The model projects a total suitable habitat area of 1,875 km2, constituting 39.56% of Lombok Island’s land area. Notably, very high-suitability areas of 175 km2, and high-suitability areas of 200 km2 encompass 3.69% and 4.22% of the island’s territory, respectively, predominantly concentrated in the southern region of the island and characterized by low precipitation and high temperatures, particularly at altitudes ranging from 0 to 1,000 meters. The model's performance, evaluated using the Area Under the Curve (AUC), yields a score of 0.725, indicating a good level of accuracy. Key factors influencing sorghum distribution include annual precipitation (68.69%), isothermality (9.56%), temperature seasonality (9.56%), precipitation seasonality (8.69%), and annual mean temperature (3.47%). The CCM3 model forecasts an expansion of sorghum distribution toward the north, occupying approximately 6.25% of Lombok's total area. These findings highlight sorghum’s adaptability and resilience to future climate changes, positioning it as a valuable resource for sustainable agriculture in arid environments.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abreha KB, Enyew M, Carlsson AS. 2022. Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta 255: 20. DOI: 10.1007/s00425-021-03799-7.
Akbar D, Utami S, Virgianto R. 2021. Analisis hubungan kekeringan meteorologis dengan kekeringan agrikultural di Pulau Lombok menggunakan Korelasi Pearson. Delta 9: 133-144. DOI: 10.31941/delta.v9i1.1275. [Indonesian]
Arshad F, Waheed M, Fatima K, Harun N, Iqbal M, Fatima K, Umbreen S. 2022. Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. in Pakistan. Sustainability 14: 7215. DOI: 10.3390/su14127215.
Basu S, Ramegowda V, Kumar A, Pereira A. 2016. Plant adaptation to drought stress. F1000Res 5: F1000 Faculty Rev-1554. DOI: 10.12688/f1000research.7678.1.
Chen S, Wu MC, Marshall S, Juang H, Roads JO. 2003. 2×CO2 Eastern Asia regional responses in the RSM/CCM3 modeling system. Glob Planet Change 37: 277-285. DOI: 10.1016/S0921-8181(02)00199-6.
?uda J, Skálová H, Janovský Z, Pyšek P. 2015. Competition among native and invasive Impatiens species: The roles of environmental factors, population density and life stage. AoB Plants 7: plv033. DOI: 10.1093/aobpla/plv033.
Dong H, Zhang N, Shen S, Zhu S, Fan S, Lu Y. 2023. Effects of climate change on the spatial distribution of the threatened species Rhododendron purdomii in Qinling-Daba Mountains of Central China: Implications for conservation. Sustainability 15 (4): 3181. DOI: 10.3390/su15043181.
Gafna DJ, Dolos K, Mahiri IO, Mahiri JG, Obando JA. 2017. Diversity of medicinal plants and anthropogenic threats in the Samburu Central Sub-County of Kenya. Afr J Tradit Complement Altern Med 14 (5): 72-79. DOI: 10.21010/ajtcam.v14i5.10.
Govindasamy B, Duffy PB, Coquard J. 2003. High-resolution simulations of global climate, part 2: Effects of increased greenhouse cases. Clim Dyn 21: 391-404. DOI: 10.1007/s00382-003-0340-6.
Huang E, Chen Y, Fang M, Zheng Y, Yu S. 2021. Environmental drivers of plant distributions at global and regional scales. Glob Ecol Biogeogr 30 (3): 697-709. DOI: 10.1111/geb.13251.
Iqbal MF, Liu MC, Iram A, Feng YL. 2020. Effects of the invasive plant Xanthium strumarium on diversity of native plant species: A competitive analysis approach in North and Northeast China. PLoS ONE 15 (11): e0228476. DOI: 10.1371/journal.pone.0228476.
Kigen C, Dennis M, Ochieno Muoma J, Shivoga W, Konje M, Onyando Z, Soi B, Makindi S, Kisoyan P, Mironga J. 2014. Spatial modeling of sorghum (Sorghum bicolor) growing areas in Kenyan arid and semi-arid lands. Elixir Remote Sens 66: 20674-20678.
Lemenkova P. 2020. Using R packages 'Tmap', 'Raster' And 'Ggmap' for cartographic visualization: an example of DEM-based terrain modelling of Italy, Apennine Peninsula. Zbornik radova - Geografski fakultet Univerziteta u Beogradu 68: 99-116. DOI: 10.5937/zrgfub2068099L.
Mahmoudi J. 2012. Considering livestock grazing on the diversity of medicinal plants (Case study: Boz Daghi arid and semi-arid rangelands). J Med Plants Res 6 (6): 990-996. DOI: 10.5897/JMPR11.566.
Mao M, Chen S, Ke Z, Qian Z, Xu Y. 2022. Using MaxEnt to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects 13: 1008. DOI: 10.3390/insects13111008.
Marcer A, Sáe L, Molowny-Horas R, Pons X, Pino J. 2013. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol Conserv 166: 221-230. DOI: 10.1016/j.biocon.2013.07.001.
McCann T, Krause D, Sanguansri P. 2015. Sorghum—New gluten-free ingredient and applications. Food Austral 67 (6): 24-26.
Mugiyo H, Chimonyo VGP, Kunz R, Sibanda M, Nhamo L, Masemola C, Modi AT, Mabhaudhi T. 2022. Mapping the spatial distribution of underutilised crop species under climate change using the MaxEnt model: A case of KwaZulu-Natal, South Africa. Clim Serv 28: 100330. DOI: 10.1016/j.cliser.2022.100330.
Natarajan S, Elangovan M, Venkateswaran K, Pandravada SR, Pranusha P, Chakrabarty SK. 2016. Maximum Entropy (MaxEnt) approach to Sorghum landraces distribution modelling. Indian J Plant Genet Resour 29: 16. DOI: 10.5958/0976-1926.2016.00004.8.
Niu K, Zhao L, Zhang Y, Wang Z, Wang Z, Yang H. 2022. Prediction of potential sorghum suitability distribution in China based on Maxent Model. Am J Plant Sci 13: 856-871. DOI: 10.4236/ajps.2022.136057.
Paesal, Syuryawati, Suarni, Aqil M. 2021. Sorghum cultivation of the ratoon system for increased yields in dry land. IOP Conf Ser: Earth Environ Sci 911: 012035. DOI: 10.1088/1755-1315/911/1/012035.
Pradhan P, Setyawan AD. 2021. Filtering multi-collinear predictor variables from multi-resolution rasters of WorldClim 2.1 for ecological niche modeling in Indonesian context. Asian J For 5: 111-122. DOI: 10.13057/asianjfor/r050207.
Prasad VBR, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, Singla-Pareek SL, Pareek A, Prasad PVV. 2021. Drought and high temperature stress in sorghum: Physiological, genetic, and molecular insights and breeding approaches. Intl J Mol Sci 22 (18): 9826. DOI: 10.3390/ijms22189826.
Reddy MT, Begum H, Sunil N, Pandravada SR, Sivaraj N. 2015. Assessing climate suitability for sustainable vegetable Roselle (Hibiscus sabdariffa var. sabdariffa L.) cultivation in India using MaxEnt. Agric Biol Sci J 1(2): 62-70.
Ruiz-Giralt A, Biagetti S, Madella M, Lancelotti C. 2023. Small-scale farming in drylands: New models for resilient practices of millet and sorghum cultivation. PLoS ONE 18 (2): e0268120. DOI: 10.1371/journal.pone.0268120.
Rutayisire A, Lubadde G, Mukayiranga A, Edema R 2021. Response of sorghum to cold stress at early developmental stage. Intl J Agron 2021: 8875205. DOI: 10.1155/2021/8875205.
Sapta S, Sulistyantara B, Fatimah I, Faqih A. 2015. Geospatial approach for ecosystem change study of Lombok Island under the influence of climate change. Proc Environ Sci 24: 165-173. DOI: 10.1016/j.proenv.2015.03.022.
Sarshad A, Talei D, Torabi M, Rafiei F, Nejatkhah P. 2021. Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN Appl Sci 3: 81. DOI: 10.1007/s42452-020-03977-4.
Semu AA, Bekele T, Lulekal E, Cariñanos P, Nemomissa S. 2021. Projected impact of climate change on habitat suitability of a vulnerable endemic Vachellia negrii (Pic.Serm.) Kyal. & Boatwr (Fabaceae) in Ethiopia. Sustainability 13: 11275. DOI: 10.3390/su132011275.
Song D, Li Z, Wang T, Qi Y, Han H, Chen Z. 2023. Prediction of changes to the suitable distribution area of Fritillaria przewalskii Maxim. in the Qinghai-Tibet Plateau under shared Socioeconomic Pathways (SSPs). Sustainability 15: 2833. DOI: 10.3390/su15032833.
Stephenson K, Wilson B, Taylor M, McLaren K, Veen R, Kunna J, Campbell J. 2022. Modelling climate change impacts on tropical dry forest fauna. Sustainability 14(8): 4760, DOI: 10.3390/su14084760.
Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using Maxent model under climate change in China. Glob Ecol Conserv 16: e00477. DOI: 10.1016/j.gecco.2018.e00477.
Xie C, Xiaoya Y, Liu D, Fang Y. 2020. Modelling suitable habitat and ecological characteristics of old trees using DIVA-GIS in Anhui Province, China. Polish J Environ Stud 29 (2): 1931-1943. DOI: 10.15244/pjoes/110346.
Yanti LR, Soemeinaboedhy IN, Yasin I, Rahayu R. 2022. The relationship between drought events and The El-Nino Phenomena in The North Lombok Regency. Agrokomplek 1 (3): 285-293. DOI: 10.29303/jima.v1i3.2147.
Yasin I, Mas’hum M, Abawi Y, Hadiahwaty L. 2004. Southern oscillation index for forecasting seasonal rainfall characteristic to determine upland planting strategy in Lombok in Lombok Island. J Agrometeorol 18 (2): 24-36. DOI: 10.29244/j.agromet.18.2.24-36.
Zbigniew K. 2014. Fifth IPCC Assessment Report Now Out. Papers on Global Change IGBP. 21. DOI: 10.1515/igbp-2015-0001.
Zhao WL, Chen HG, Lin L, Cui ZJ, Jin L. 2018. Distribution of habitat suitability for different sources of Fritillariae cirrhosae bulbus. China J Ecol 37: 1037-1042.
Zhu GP, Gariepy TD, Haye T, Bu WJ. 2017. Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. J Pest Sci 90: 1-13. DOI: 10.1007/s10340-016-0786-z.