Ecological change detection in PT. Semen Gresik Rembang, Indonesia (limestone mining) activities between 2016 to 2022

##plugins.themes.bootstrap3.article.main##

ULFI HANUM
DIANTI
ROSI NUR SAFITRI
VANIA MAHARANI RIZKY PRATIWI
WAHYU GILANG HERMAWAN
MUHAMMAD INDRAWAN
AHMAD DWI SETYAWAN

Abstract

Abstract. Hanum U, Dianti, Safitri RN, Pratiwi VMR, Hermawan WG, Indrawan M, Setyawan AD. 2024. Ecological change detection in PT. Semen Gresik Rembang, Indonesia (limestone mining) activities between 2016 to 2022. Intl J Trop Drylands 8: 59-68. Limestone mining, such as at the PT. Semen Gresik Rembang (Persero) Tbk in Rembang District, East Java Province, Indonesia, impacts long-term environmental changes. One way to minimize environmental impacts due to mining activities is through remote sensing and Geographic Information Systems (GIS) to determine the dynamics of landscape management. This study aims to assess ecological changes due to the cement industry or limestone mining activities in Rembang between 2016 to 2022, the assessment was carried out by considering the dynamics of land use-land cover (LULC), and measuring the emergence of water bodies and the dynamics of vegetation productivity. The data used includes Landsat 7 ETM+ satellite image data in 2016 and three Landsat 8 OLI/ TIRS satellite image data in 2018, 2020, and 2022 with a 30 m spatial resolution. Therefore, satellite image data is collected before image processing, including correction, band merging, and cropping. The maximum likelihood image classification technique was used to analyze the dynamics of land use, land cover, and the growth of water bodies. Changes in vegetation productivity were analyzed with NDVI. In the LULC analysis, an accuracy test has been conducted with satisfactory results of more than 0.81. In the occurrence of water bodies with LULC analysis, it is known that there is a possible occurrence of water bodies in the form of ex-mining ponds. During the vulnerable years of 2016 to 2022, it is known that the area of the water body increased by 5.26 hectares. The vegetation productivity results show that those area's productivity is improving; the increase in water body cover is associated with decreased vegetation land cover by 18.58 hectares and open land cover by 8.71 hectares. The increase in mining land coverage between 2016 and 2022 is 38.07 hectares; meanwhile, the increase in built-up land area from 2016 to 2022 also increased by 15.88 hectares. Thus, remote sensing and GIS can be used to determine the dynamics of landscape management in an area.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Agboola O, Babatunde DE, Fayomi OSI, Sadiku ER, Popoola P, Moropeng L, Yahaya A, Mamudu OA. 2020. A review on the impact of mining operation: Monitoring, assessment and management. Result Eng 8: 100181. DOI: 10.1016/j.rineng.2020.100181.
Akbar MR, Arisanto PAA, Sukirno BA, Merdeka PH, Priadhi MM, Zallesa S. 2020. Mangrove vegetation health index analysis by implementing NDVI (Normalized Difference Vegetation Index) classification method on Sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap. IOP Conf Ser: Earth Environ Sci 584 (1): 012069. DOI: 10.1088/1755-1315/584/1/012069.
Arroyo?Rodríguez V, Fahrig L, Tabarelli M et al. 2020. Designing optimal human?modified landscapes for forest biodiversity conservation. Ecol Lett 23 (9): 1404-1420. DOI: 10.1111/ele.13535.
As’ari R, Mulyanie E, Rohmat D. 2019. Zoning of post-sand mining land use on the coast of Cipatujah, Tasikmalaya Regency, West Java. Jurnal Geografi 11 (2): 171-181. DOI: 10.24114/jg.v11i2.10712. [Indonesian]
Assal TJ, Anderson PJ, Sibold J. 2015. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling. Remote Sens Lett 6 (10): 755-764. DOI: 10.1080/2150704X.2015.1072289.
Astuti SA, Simandjuntak A. 2018. Pemberdayaan masyarakat dalam kegiatan usaha pertambangan batu bara berdasarkan prinsip keadilan di Kalimantan Timur. J de Facto 5 (2): 162-177. [Indonesian]
Besser H, Hamed Y. 2021. Environmental impacts of land management on the sustainability of natural resources in Oriental Erg Tunisia, North Africa. Environ Dev Sustain 23 (8): 11677-11705. DOI: 10.1007/s10668-020-01135-9.
Buta M, Blaga G, Paulette L, P?curar I, Ro?ca S, Borsai O, Grecu F, Sînziana PE, Negru?ier C. 2019. Soil reclamation of abandoned mine lands by revegetation in Northwestern part of Transylvania: A 40-Year retrospective study. Sustainability 11 (12): 3393. DOI: 10.3390/su11123393
Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113 (5): 893-903. DOI: 10.1016/j.rse.2009.01.007.
Chen J, Zhu X, Vogelmann JE, Gao F, Jin S. 2011. Simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens Environ 115 (4): 1053-1064. DOI: 10.1016/j.rse.2010.12.010.
da Silva VS, Salami G, da Silva MIO, Silva EA, Junior JJM, Alba E. 2020. Methodological evaluation of vegetation indexes in Land Use and Land Cover (LULC) classification. Geol Ecol Landsc 4 (2): 159-169. DOI: 10.1080/24749508.2019.1608409.
Dewi LML. 2016. Akuntabilitas Pelaporan Program (Corporate Social Responcibility) CSR Pada PT. Semen Gresik. [Thesis]. Universitas Islam Negeri Maulana Malik Ibrahim, Malang. [Indonesian]
Dharmawan YS, Izatri DI, Rohmah NI. 2020. Procurement process analysis using process mining in cement manufacturing Company (Case Study PT. Semen Indonesia Persero, Tbk). IPTEK (5): 39-44. DOI: 10.12962/j23546026.y2020i5.7929.
Erener A. 2011. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine. Intl J Coal Geol 86 (1): 20-26. DOI: 10.1016/j.coal.2010.12.009.
Ericsson M, Löf O. 2019. Mining’s contribution to national economies between 1996 and 2016. Miner Econ 32 (2): 223-250. DOI: 10.1007/s13563-019-00191-6.
Estoque RC, Murayama Y. 2015. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol Indic 56: 205-217. DOI: 10.1016/j.ecolind.2015.03.037.
Fang X, Fu Y. 2011. Impact of coal mining on karst water system in North China. Procedia Earth Planet Sci 3: 293-302. DOI: 10.1016/j.proeps.2011.09.097.
Firozjaei MK, Sedighi A, Firozjaei HK, Kiavarz M, Homaee M, Arsanjani JJ, Alavipanah SK. 2021. A historical and future impact assessment of mining activities on surface biophysical characteristics change: A remote sensing-based approach. Ecol Indic 122: 107264. DOI: 10.1016/j.ecolind.2020.107264.
Gautama RS. 1994. Acid water problem in Bukit Asam Coal Mine, South Sumatra, Indonesia. Intl Mine Water Assoc Proc 5: 533-542.
Goslee SC. 2011. Analyzing remote sensing data in R: The landsat package. J Stat Softw 43 (4): 1-25. DOI: 10.18637/jss.v043.i04.
Haddaway NR, Smith A, Taylor JJ, Andrews C, Cooke SJ, Nilsson AE, Lesser P. 2022. Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social–ecological systems in Arctic and boreal regions: A systematic map. Environ Evid 11: 9. DOI: 10.1186/s13750-022-00282-y.
Hidayatullah U, Rini HS, Arsal T. 2016. Analisis peta konflik pembangunan Pabrik PT. Semen Indonesia di Kecamatan Gunem Kabupaten Rembang. Solidarity 5 (1): 10-21. DOI: 10.15294/solidarity.v5i1.14481. [Indonesian]
Islami FA, Tarigan SD, Wahjunie ED, Dasanto BD. 2022. Accuracy assessment of land use change analysis using google earth in Sadar Watershed Mojokerto Regency. IOP Conf Ser: Earth Environ Sci 950 (1): 012091. DOI: 10.1088/1755-1315/950/1/012091.
Johansen B, Tømmervik H. 2014. The relationship between phytomass, NDVI and vegetation communities on Svalbard. Intl J Appl Earth Obs Geoinf 27: 20-30. DOI: 10.1016/j.jag.2013.07.001.
Li N, Guo Y, Wang L, Wang Q, Yan D, Zhao S, Lei T. 2024. Evaluation and quantitative characterization for the ecological environment impact of open pit mining on vegetation destruction from landsat time series: A case study of Wulishan limestone mine. Ecol Indic 158: 111371. DOI: 10.1016/j.ecolind.2023.111371.
Liu Y, Zhang J. 2023. A spatiotemporal inference model for hazard chain based on weighted dynamic Bayesian networks for ground subsidence in mining areas. Spat Stat 58: 100782. DOI: 10.1016/j.spasta.2023.100782.
Madasa A, Orimoloye IR, Ololade OO. 2021. Application of geospatial indices for mapping land cover/use change detection in a mining area. J Afr Earth Sci 175: 104108. DOI: 10.1016/j.jafrearsci.2021.104108.
Millán VE, Müterthies A, Pakzad K, Teuwsen S, Benecke N, Zimmermann K, Kateloe HJ, Preuße A, Helle K, Knoth C. 2014. GMES4Mining: GMES-based Geoservices for mining to support prospection and exploration and the integrated monitoring for environmental protection and operational security. BHM Berg- und Hüttenmännische Monatsheft 2 (159): 66-73. DOI: 10.1007/s00501-013-0220-2.
Mohsin M, Zhu Q, Naseem S, Sarfraz M, Ivascu L. 2021. Mining industry impact on environmental sustainability, economic growth, social interaction, and public health: An application of semi-quantitative mathematical approach. Processes 9 (6): 972. DOI: 10.3390/pr9060972.
Nasional.tempo.co. 2017. Begini Desain Penambangan Baru Pabrik Semen di Rembang. https://nasional.tempo.co/read/834260/begini-desain-penambangan-baru-pabrik-semen-di-rembang. [Indonesian]
Orimoloye IR, Ololade OO. 2020. Spatial evaluation of land-use dynamics in gold mining area using remote sensing and GIS technology. Intl J Environ Sci Technol 17: 4465-4480. DOI: 10.1007/s13762-020-02789-8.
Owolabi A. 2020. Assessment of terrain and land use/land cover changes of mine sites using geospatial techniques in plateau state, Nigeria. J Min Environ 11 (4): 935-948. DOI: 10.22044/jme.2020.9668.1879.
Padmanaban R, Bhowmik AK, Cabral P. 2017. A remote sensing approach to environmental monitoring in a reclaimed mine area. ISPRS Intl J Geo-Inf 6 (12): 401. DOI: 10.3390/ijgi6120401.
Padmanaban R. 2012. Integrating of urban growth modelling and utility management system using spatio temporal data mining. Intl J Adv Earth Sci Eng 1: 13-15.
Penamerahputih.com. 2017. Kenapa Semen Rembang Begitu Menakutkan Bagi Semen Asing? https://penamerahputih.com/2017/06/11/kenapa-semen-rembang-begitu-menakutkan-bagi-semen-asing/. [Indonesian]
Pongtuluran Y. 2015. Manajemen sumber daya alam dan lingkungan. Andi, Yogyakarta. [Indonesian]
Ranjan AK, Parida BR, Dash J, Gorai AK. 2022. Quantifying the impacts of opencast mining on vegetation dynamics over eastern India using the long-term Landsat-series satellite dataset. Ecol Inf 71: 101812. DOI: 10.1016/j.ecoinf.2022.101812.
Risal S, Paranoan DB, Djaja S. 2017. Analisis dampak kebijakan pertambangan terhadap kehidupan sosial ekonomi masyarakat di Kelurahan Makroman. Jurnal Administrative Reform 1 (3): 516-530. [Indonesian]
Rouse JW, Haas RW, Schell JA, Deering DW, Harlan JC. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III, Final Report, Greenbelt, MD.
Sahu HB, Prakash N, Equeenuddin SM, Patel RK. 2016. Surface runoff assessment due to opencast coal mining and its management. Proceedings of 6th Asian Mining Congress at Kolkata, February 23-27, 2016.
Saining A, Udiansyah U, Istikowati WT, Sukarna RM. 2023. Analisis kebijakan pengelolaan hutan fragmentasi di kawasan pasca tambang batubara di Kabupaten Kapuas Provinsi Kalimantan Tengah. Jurnal Hutan Tropis 11 (3): 294-300. DOI: 10.20527/jht.v11i3.17623. [Indonesian]
Shen L, Zeng Q. 2022. Multiscenario simulation of land use and land cover in the Zhundong mining area, Xinjiang, China. Ecol Indic 145: 109608. DOI: 10.1016/j.ecolind.2022.109608.
Simion A, Drebenstedt C, Laz?r M. 2021. Environmental impact on soil and water because of mining activities in the Eastern Part of Jiu Valley. Mining Revue 27 (3): 1-16. DOI: 10.2478/minrv-2021-0021.Siregar HA, Hasjim M, Juniah R. 2020. Evaluasi teknis dan ekonomis reklamasi lahan pasca tambang di PT. Semen Indonesia. Jurnal Pertambangan 4 (2): 90-97. DOI: 10.36706/jp.v4i2.421. [Indonesian]
Stehman SV. 1996. Estimating the kappa coefficient and its variance under stratified random sampling. Photogramm Eng Remote Sens 62 (4): 401-407.
Sutomo S, Wahyudi S, Pangestuti IRD, Muharam H. 2020. The determinants of capital structure in coal mining industry on the Indonesia stock exchange. Invest Manag Financ Innov 17 (1): 165-174. DOI: 10.21511/imfi.17(1).2020.15.
Tabelin CB, Dallas J, Casanova S, Pelech T, Bournival G, Saydam S, Canbulat I. 2021. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner Eng 163: 106743. DOI: 10.1016/j.mineng.2020.106743.
Undang-Undang Republik Indonesia (UU RI) No.32. 2009. Tentang Perlindungan Dan Pengelolaan Lingkungan Hidup. Pemerintah Indonesia, Jakarta. [Indonesian]
Vorovencii I. 2021. Changes detected in the extent of surface mining and reclamation using multitemporal Landsat imagery: A case study of Jiu Valley, Romania. Environ Monit Assess 193 (1): 30. DOI: 10.1007/s10661-020-08834-w.
Wasito W, Syaikhudin AY. 2020. Studi penerapan Critical Path Metode (CPM) pada proyek pembangunan pabrik semen Rembang PT. Semen Gresik Rembang. J Manag Account 3 (2): 74-91. DOI: 10.52166/j-macc.v3i2.2072. [Indonesian]
Wei Y, Li Z, Chen B, Yin H, Xiao J, Kong J. 2023. A numerical simulation study on the evolutionary characteristics of the damage process of karst soil cavity under positive pressure effect. Geohazard Mech 1 (4): 288-296. DOI: 10.1016/j.ghm.2023.10.002.
Wicaksono A. 2022. Forestry affairs in the law of the Republic of Indonesia Number 23 of 2014 concerning local government: A review. Jurnal Kajian Pemerintah 8 (1): 64-73. DOI: 10.25299/jkp.2022.vol8(1).9488.
Wijaya N. 2015. Deteksi perubahan penggunaan lahan dengan citra landsat dan sistem informasi geografis: Studi kasus di wilayah metropolitan Bandung, Indonesia. Geoplanning 2 (2): 82-92. DOI: 10.14710/geoplanning.2.2.82-92. [Indonesian]
Yunanto T, Amanah F, Gultom TH, Asdini S. 2021. The evaluation of flora and fauna in coal mine reclamation land (case study: PT Dharma Puspita Mining, East Kalimantan, Indonesia). Mine Closure 2021: 27. DOI: 10.36487/ACG_repo/2152_27.
Zhu Z, Woodcock CE. 2012. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ 118: 83-94. DOI: 10.1016/j.rse.2011.10.028.