Isolation and characterization of lactic acid bacteria from the gut of the grasscutter (Thryonomys swinderianus)

##plugins.themes.bootstrap3.article.main##

MARTIN MAWULI AGBOVE
BONIFACE B. KAYANG
JAMES E. FUTSE

Abstract

Abstract. Agbove MM, Kayang BB, Futse JE. 2021. Isolation and characterization of lactic acid bacteria from the gut of the grasscutter (Thryonomys swinderianus). Asian J Trop Biotechnol 18: 79-85. Intestinal microbiota can affect hosts either beneficially or harmfully. Many efforts have been made to identify and study the microbial community in the gastrointestinal tract of livestock. The grasscutter is a micro-livestock species whose intestinal microflora is yet to be explored. Lactic acid bacteria confer probiotic benefits among the intestinal microflora and are of special interest. This study was conducted to isolate and characterize lactic acid bacteria from the gut of grasscutters in Ghana. Fresh fecal samples were collected from a total of 26 grasscutters comprising nine domesticated grasscutters and 17 wild grasscutters from Ghana. The samples were cultured on MRS agar, and the DNA from 57 bacterial colonies was extracted and sequenced at the 16S rRNA gene to identify the bacteria at the species level using the Basic Local Alignment Search Tool in the National Centre for Biotechnology Information database. Some of the five genera comprising 15 species of lactic acid bacteria (LAB) were identified with ?99% similarity. Those included Lactobacillus fermentum (n = 11), L. formosensis (n = 1), L. salivarius (n = 11), L. ingluviei (n = 9), L. plantarum (n= 7), L. reuteri (n = 2), L. taiwanensis (n = 1), L. rhamnosus (n= 1), Pediococcus pentosaceus (n = 5), Enterococcus gallinarum (n = 2), E. faecium (n = 2), Staphylococcus homini (n = 2), Weissella cibaria (n = 1), E. hirae (n = 2), and W. paramesenteroides (n = 1). Moreover, all five genera were isolated from the domesticated grasscutters, while only two genera (Lactobacillus and Pediococcus) were isolated from wild grasscutters. The isolation of L. ingluviei is very interesting since this species was originally isolated from birds and is associated with weight gain in mice. The bacteria identified in this study may be important in determining the intestinal health of the grasscutter and should be assessed for their potential as probiotics to improve grasscutter nutrition.

##plugins.themes.bootstrap3.article.details##

References
Adeniyi BA, Adetoye A, Ayeni FA. 2015. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. Afr Health Sci 15 (3): 888-895. DOI: 10.4314/ahs.v15i3.24.
Adu EK, Asafu-Adjaye A, Hagan BA, Nyameasem JK. 2017. The grasscutter: An untapped resource of Africa's grassland. Livest Res Rural Dev 29: 47.
Adu EK, Wallace PA. 2004. Growth and reproduction performance of grasscutter fed freshly cut panicum. J Ghana Sci Assoc 5: 90-93.
Aljoubori A, Abdallah N, Zulkifli I, Solemani AF, Liang JB, Oskoueian E. 2014. Lactobacillus salivarius fermentation reduced glucosinolate and fibre in canola meal. Food Res 3: 95-102. DOI: 10.5539/jfr.v3n5p95.
Angelakis E, Raoult D. 2010. The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PLoS One 5: 10463. DOI: 10.1371/journal.pone.0010463.
Angelakis E. 2012. An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice. Microb Pathog 52: 61-68. DOI: 10.1016/j.micpath.2011.10.004.
Baele M. 2003. Lactobacillus ingluviei sp. nov., isolated from the intestinal tract of pigeons. Intl J Syst Evol Microbiol 53: 133-136. DOI: 10.1099/ijs.0.02206-0.
Baptist R, Mensah GA. 1986. Benin and West Africa: The Cane rat – Farm animal of the future? Wild Anim Rev 60: 2-6.
Belda E, Pedrola L, Peretó J, Martínez-Blanch JF, Montagud A, Navarro E. 2011. Microbial diversity in the midguts of field and lab-reared populations of the European Corn Borer Ostrinia nubilalis. PLoS One 6: e21751. DOI: 10.1371/journal.pone.0021751.
Bron PA, Molenar D, de Vos WM, Kleerebezem M. 2006. DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100: 728-738. DOI: 10.1111/j.1365-2672.2006.02891.x.
da Costa TM, Morgado PG, Cavalcante FS, Damasco AP, Nouér SA, Dos Santos KR. 2016. Clinical and microbiological characteristics of heteroresistant and vancomycin-intermediate Staphylococcus aureus from bloodstream infections in a Brazilian teaching hospital. PLoS One 11 (8): e0160506. DOI: 10.1371/journal.pone.0160506.
De Angelis M, Di Cagno R, Huet C, Creechio C, Fox PF, Gobbetti M. 2004. Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70: 1336-1346. DOI: 10.1128/AEM.70.3.1336-1346.2004.
Devriese LA, Van de Kerckhove A, Kilpper-Balz, Schleifer KH. 1987. Characterisation and identification of Enterococcus spp. isolated from the intestines of animals. Syst Bacteriol 37 (3): 257- 259. DOI: 10.1099/00207713-37-3-257.
Draser BS. 1989. The bacterial flora of the stomach and small intestine. Gastroenterologie Cliniqueet Biologique, 13: 18B-20B.
Eben AB. 2004. Grasscutter: Importance, Habitat, Characteristics, Feed and Feeding, Breeding and Diseases. Center for Biodiversity Utilization and Development (CBUD), Kumasi. Ghana.
Florou-Paneri P, Christaki E, Bonos E. 2013. Lactic acid bacteria as source of functional ingredients. In: Kongo J, (eds). R and D for Food, Health and Livestock Purposes. Intech, London. DOI: 10.5772/47766.
Ghoddusi H. 2011. Lactic Acid Bacteria and Bifidobacteria: Current progress in advanced research. Intl J Dairy Technol 65 (3): 462-464. DOI: 10.1111/j.1471-0307.2012.00825.x.
Khan M, Raoult D, Richet H, Lepidi H, La SB. 2007. Growth- promoting effects of single-dose intragastrically administered probiotics in chickens. Br Poult Sci 48: 732-735. DOI: 10.1080/00071660701716222.
Kobierecka PA, Wyszynska AK, Aleksandrzak-Piekarczyk T, Kuczkowski M, Tuzimek A, Piotrowska W, Gorecki A, Adamska I, Wieliczka I, Bardowski J, Jagusztyn-Krynicka E. 2017. In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonisation. Microbiol Open 6: e00512. DOI: 10.1002/mbo3.512.
Kogno E, Soncy K, Taale E, Anani K, Karou SD, Ameyapoh Y. 2017. Molecular characterization of lactic acid bacteria involved in togolese traditional fermented cereal foods. Rec Adv Multidiscip Res 4 (2): 2308-2312.
Kumar S, Stecher G, Tamura K. 2015. MEGA 7: Molecular evolutionary genetics analysis version 7.0. Mol Biol Evol 33 (7): 1870-1874. DOI: 10.1093/molbev/msw054.
Lane DJ. 1991. 16S/23S rRNA Sequencing. In: Stackebrandt, Goodfellow M (eds). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
Liu H, Zhang J, Zhang SH, Yang FJ, Thacker PA, Zhang GL. 2014. Oral administration of Lactobacillus Fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem 62 (4): 860e6. DOI: 10.1021/jf403288r.
López-Gálvez G, López-Alonso M, Pechova A, Mayo B, Dierick N, Gropp J. 2020. Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim Feed Sci Technol 271: 114727. DOI: 10.1016/j.anifeedsci.2020.114727.
Markowiak P, ?li?ewska K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9 (9): 1021. DOI: 10.3390/nu9091021.
Martino ME, Maifreni M, Marino M, Batolomeoli I, Carraro L, Fasolato L, Cardazzo B. 2013. Genotypic and phenotypic diversity of Pediococcus pentosaceus strains isolated from food matrices and characterisation of the penocin operon. Antonie Van Leeuwenhoek 103: 1149-1163. DOI: 10.1007/s10482-013-9897-1.
McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA. 1996. Animal Nutrition (5thed). Longman, New York, USA.
Mohamed WF. 2011. The crested porcupine, Hystrix cristata (Linnaeus, 1758) in Misurata, Libya. J Ecol Nat Environ 3 (7): 228-231.
National Research Council (NCR). 1991. Micro-livestock. Luthe-Known Small Animals (grasscutter) with Promising Economic Future. National Academy Press, Washington DC.
Nistal E, Caminero A, Vivas S, Morales JMR, Miera LES, Rodríguez-Aparicio LB. 2012. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94: 1724-1729. DOI: 10.1016/j.biochi.2012.03.025.
Ogier JC, Serror P. 2008. Safety Assessment of dairy microorganisms: The Enterococcus genus. Intl J Food Microbiol 126: 291-301. DOI: 10.1016/j.ijfoodmicro.2007.08.017.
Pieterse B, Leer RJ, Schuren FH, van der Werf MJ. 2005. Unravelling the multiple effects lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151: 3881-3894. DOI: 10.1099/mic.0.28304-0.
Rafat AM, Jassim A, Paul TS, Andrea LT, Darren T, Christopher CP. 2005. The genetic diversity of lactic acid producing bacteria in the equine gastrointestinal tract. FEMS Microbiol Lett 248: 75-81. DOI: 10.1016/j.femsle.2005.05.023.
Rural Infrastructure and Agro-Industries Division. 2012. Small Animals for Small Farms. Food and Agriculture Organization of the United Nations, Rome.
Sung C, Kim BG, Kim S, Joo HS, Kim PI. 2010. Probiotic potential of Staphylococcus hominis MBBL 2-9 anti- Staphylococcus aureus agent isolated from the vaginal microbiota of a healthy woman. Appl Microbiol 108: 908-916. DOI: 10.1111/j.1365-2672.2009.04485.x.
Suo C, Yin Y, Wang X, Lou X, Song D, Wang X, Gu Q. 2012. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet Res 8: 89. DOI: 10.1186/1746-6148-8-89.
Teye M, Fuseini A, Odoi FNA. 2020. Consumer acceptance, Carcass and sensory characteristics of meats of farmed and wild cane rats (Thryonomys swinderianus). Sci Afr 8: e00461. DOI: 10.1016/j.sciaf.2020.e00461.
Wang L, Fang M, Hu Y, Yang Y, Yang M, Chen Y. 2014. Characterisation of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotic for genetic engineering. Acta Biochimica et Biophysica Sinica 46: 612- 619. DOI: 10.1093/abbs/gmu037.
Wogar GSI. 2011. Performance of gestating grasscutters (Thryonomys swinderianus) fed cassava-based diets with graded protein levels. Asian J Anim Sci 5 (6): 373-380. DOI: 10.3923/ajas.2011.373.380.
Yang S, Ji K, Baik Y, Kwak W, McCaskey T. 2006. Lactic acid fermentation of food waste for swine feed. Bioresour Technol 97 (15): 1858-1864. DOI: 10.1016/j.biortech.2005.08.020.
Yapi YM, Gidenne T, Farizon Y, Segura M, Zongo D, Enjalbert F. 2012. Post-weaning changes in the digestive physiology and caecal fermentative activity in the greater cane rat (Thryonomys swinderianus). Afr Zool 47 (2): 311-320. DOI: 10.1080/15627020.2012.11407553.
Yaro M, Addo P, Barnes AR. 2012. Effect of sex and age on normal microfloral population dynamics of gastrointestinal tract in grasscutters. J Physiol Pharmacol Adv 2 (4): 184-194.
Zhao X, Higashikawa F, Noda M, Kawamura Y, Matoba Y, Kumagai T, Sugiyama M. 2012. The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet induced obese mice. PLoS One 7: e30696. DOI: 10.1371/journal.pone.0030696.
Zougou-Tovignon GC. 2005. Influence des Parties Vegetatives de Manioc (Manihot esculenta) sur les Performances Zootechniques des Aulacodes (Thryonomys swinderianus, Temminck, 1827) d'elevage. Mémoire en gestion des ressources animales et végétales en mileux tropicaux, Université de Liège. [France]