Impact of bacterial consortium on plant growth development, fruit yield and disease resistance in tomato (Solanum lycopersicum)

##plugins.themes.bootstrap3.article.main##

RAOUF AHMAD MIR
MIR KHUSHNAWAZ AHMAD
KHALID RASHID BHAT

Abstract

Abstract. Mir RA, Ahmad MK, Bhat KR. 2023. Impact of bacterial consortium on plant growth development, fruit yield and disease resistance in tomato (Solanum lycopersicum). Asian J Trop Biotechnol 20: 1-9. Agriculture plays an important role in the economic development of a country. However, using traditional fertilizers, disease resistance, and scarcity of nutrients have led to huge losses in plant productivity worldwide. Bacillus (Bacillus megaterium, Bacillus siamensis) are cosmopolitan species widely used as Plant Growth-Promoting Rhizobacteria (PGPR). This genus may be used along with other biocompatible microbes, including Azotobacter and Trichoderma, which can be used as consortia microbes as biofertilizers. However, the doubt remains in farmers' minds whether these biofertilizers completely replace chemical fertilizers. To gain insight into this doubt and clarify it, our study in this article is based on using Bio-NPK as an alternative to chemical fertilizers and Trichoderma viride as a bio-control agent. The bacterial strains and T. viride used in this experiment were isolated from GloBils organic farm. The plant growth parameters were measured after every 15 days. Fruit yield, weight, size, root length, root biomass, and shoot biomass were measured and compared with the control. Data analysis revealed a considerable difference between Bio-NPK-treated plants and chemical NPK-treated plants; further, a considerable difference is found in pots treated with Bio-NPK and Trichoderma. The Bio-NPK and Trichoderma showed higher disease resistance, stress tolerance, root development, biomass, and crop yield than chemical NPK. This study shows that Bio-NPK immunizes plants by re-organizing root development. At the same time, rhizobacteria stimulate defense response and simultaneously protect themselves from diseases.

##plugins.themes.bootstrap3.article.details##

References
Ali SK, Sandhya V, Grover M, Rao LV, Venkateswarlu B 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on the growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6: 239-246. DOI: 10.1080/17429145.2010.545147.
Alori ET, Bababola OO. 2017. Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol 9: 2213. DOI: 10.3389/fmicb.2018.02213.
Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci 9 (1): 26-32. DOI: 10.1016/j.tplants.2003.11.008.
Barakat MAS, Gabar SM. 1998. Effect of different biofertilizer types and nitrogen fertilizer levels on tomato plants. Alexandria. J Agric Res 43 (1): 149-160.
Barnawal D, Singh R, Singh RP. 2019. Role of Plant Growth Promoting Rhizobacteria in Drought Tolerance: Regulating Growth Hormones and Osmolytes. PGPR Amelioration in Sustainable Agriculture. DOI: 10.3390/agronomy9110712.
Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, Bhatti F, Koser R, Rahman S, Jan AT. 2020. Mechanistic insights of the interaction of Plant Growth Promoting Rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front Microbiol 11: 1952. DOI: 10.3389/fmicb.2020.01952.
Blackshaw RE. 2005. Nitrogen fertilizer, manure, and compost effects on weed growth and competition with spring wheat. Agronomy J 97 (6): 1612-1621. DOI: 10.2134/agronj2005.0155.
Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57: 535-538. DOI: 10.1128/aem.57.2.535-538.1991.
Chawngthu L, Hnamte R, Lalfakzuala R. 2020. Isolation and characterization of rhizospheric phosphate solubilizing bacteria from wetland paddy field of Mizoram, India. Geomicrobiol J 37 (4): 366-375. DOI: 10.1080/01490451.2019.1709108.
Delgado-Sanchez P, Ortega-Amaro MA, Jimenez-Bremont JF, Flores J. 2011. Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biol (Stuttg) 13 (1): 154-9. DOI: 10.1111/j.1438-8677.2010.00333.x.
Dutta S, Podile AR. 2010. Plant Growth Promoting Rhizobacteria (PGPR): The bugs to debug the root zone. Crit Rev Microbiol 36 (3): 232-244. DOI: 10.3109/10408411003766806.
Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, Shen Q. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem 104: 39-48. DOI: 10.1016/j.soilbio.2016.10.008.
Gupta R, Sharma JP. 2018. Characterization of PSB isolates in Rhizosphere soil of rice varieties grown at OFRC, SKUAST Jammu. Intl J Curr Microbiol Appl Sci 7 (09): 1-8. DOI: 10.20546/ijcmas.2018.709.001
Gupta S, Arora DK, Srivastava AK. 1995. Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol Biochem 27 (8): 1051-1058. DOI: 10.1016/0038-0717(95)00011-3.
Jain R, Saxena J, Sharma V. 2012. Effect of phosphate solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth (533-541). Folia Microbiol (Praha) 57 (6): 533-41. DOI: 10.1007/s12223-012-0167-9.
Khan N, Ali S, Tariq H, Latif S, Yasmin H, Mehmood A, Shahid MA. 2020. Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy 10 (11): 1683. DOI: 10.3390/agronomy10111683.
Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P. 2019a. Role of Plant Growth Promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 436 (1-2): 325-345. DOI: 10.1007/s11104-019-03932-2.
Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P. 2019b. Supplementation with Plant Growth Promoting Rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 230: 628-639. DOI: 10.1016/j.chemosphere.2019.05.072.
Khanna K, Kohli SK, Ohri P, Bhardwaj R, Alhuqail AA, Siddiqui MH, Alosaimi GS, Ahmad P. 2019. Microbial fortification improved photosynthetic efficiency and secondary metabolism in Lycopersicon esculentum plants under Cd stress. Biomolecules 9: 581. DOI: 10.3390/biom9100581.
Lalitha S. 2017. Plant growth promoting microbes: A boon for sustainable agriculture sustainable. In: Dhanarajan A (eds). Sustainable Agriculture towards Food Security. Springer Nature Singapore Pte Ltd., Singapore. DOI: 10.1007/978-981-10-6647-4_8.
Mehnaz S, Baig DN, Lazarovits G. 2010. Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20: 1614-1623. DOI: 10.4014/jmb.1005.05014.
Meyer JM, Abdallah MA. 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiol 107: 319-328. DOI: 10.1099/00221287-107-2-319.
Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R, Kanaya S. 2006. Biofilm formation by a Bacillus subtilis strain that produces c-polyglutamate. Microbiol 152: 2801-2807. DOI: 10.1099/mic.0.29060-0.
Muhammad S, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of Plant Growth Promoting Rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Indus Microbiol Biotechnol 34 (10): 635-648. DOI: 10.1007/s10295-007-0240-6.
Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170: 265-270. DOI: 10.1111/j.1574-6968.1999.tb13383.x.
Niknejad M, Tehani AS, Okhovat M. 2000. effect of antagonistic fungi Trichoderma spp. on the control of Fusarium wilt of tomato caused Fusarium oxysporum f.sp. lycopersici under greenhouse conditions. Iranian J Agric Sci 1: 31-37. DOI: 10.1007/s11033-019-04901-9.
Oerke EC, Dehne HW. 2004. Safeguarding production losses in major crops and the role of crop protection. Crop Prot 23: 275-285. DOI: 10.1016/j.cropro.2003.10.001.
Ortíz-Castro Randy, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J. 2009. The role of microbial signals in plant growth and development. Plant Signal Behav 4 (8): 701-712. DOI: 10.4161/psb.4.8.9047.
Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P. 2016. Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35 (3): 877-902. DOI: 10.1007/s00344-016-9583-4.
Pérez-Montaño F, Alías Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez Guerrero I, López Baena FJ, Ollero FJ, Cubo T. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169 (5-6): 325-336. DOI: 10.1016/j.micres.2013.09.011.
Podile AP, Kishore GA 2007. Plant Associated Bacteria. Kluwer Academic Publishers, Dordrecht. DOI: 10.1007/1-4020- 4538-7_6.
Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y. 2017. Addition of plant growth promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol 17: 1-12. DOI: 10.1186/s12866-017-1039-x.
Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, Shen Q. 2012. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fertil Soils 48: 807-816. DOI: 10.1007/s00374-012-0675-4.
Teng F, Nair SSD, Zhu P, Li S, Huang S, Li X, Xu J, Yang F. 2018. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci Rep 8: 1-12. DOI: 10.1038/s41598-018-34294-x.
Wang Z, Li T, Wen X, Lui Y, Han J, Liao Y, DeBruyn JM. 2017. Fungal communities in Rhizosphere soil under conservation tillage shift in response to plant growth. Front Microbiol 8: 1-11. DOI: 10.3389/fmicb.2017.0130.
Wani SP, Rupela OP, Lee KK. 1995. Sustainable agriculture in the semi arid tropics through biological nitrogen fixation in grain legumes. Plant Soil 174: 29-49. DOI: 10.1007/bf00032240.
Widawati S, Suliasih. 2006. The population of Phosphate Solubilizing Bacteria (PSB) from Cikaniki, Botol Mountain, and Ciptarasa Area, and the ability of PSB to solubilize insoluble P in solid pikovskaya medium. Biodiversitas 7 (2): 109-113. DOI: 10.13057/biodiv/d070203.
Yaseen R, Aziz O, Saleem MH, Riaz M, Zafar-ul-Hye M, Rehman M, Ali S, Rizwan M, Alyemeni MN, El-Serehy HA, Al-Misned FA, Ahmad P. 2020. Ameliorating the drought stress for wheat growth through application of ACC-Deaminase containing Rhizobacteria along with Biogas Slurry. Sustainability 12 (15): 6022. DOI: 10.3390/su12156022.
Zhang J, Zhu T, Cai Z, Qin S, Müller C. 2012. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations. Eur J Soil Sci 63: 75-85. DOI: 10.1111/j.1365-2389.2011.01410.x.