Enterobacter tabaci and Bacillus cereus as biocontrol agents against pathogenic Ralstonia solanacearum of eggplant

##plugins.themes.bootstrap3.article.main##

AZILAH ABDUL MALEK
NUSAIBAH SYD ALI
JUGAH KADIR
GANESAN VADAMALAI
HALIMI MOHD SAUD

Abstract

Abstract. Malek AA, Ali NS, Kadir J, Vadamalai G, Saud HM. 2023. Enterobacter tabaci and Bacillus cereus as biocontrol agents against pathogenic Ralstonia solanacearum of eggplant. Asian J Trop Biotechnol 20: 24-31. Over the world, Ralstonia solanacearum caused bacterial wilt disease is responsible for more than 90% of agricultural losses. Therefore, finding a potential biological control agent is extremely important, especially against R. solanacearum. The present study aimed to isolate, evaluate and identify potential endophytic bacteria to restrain R. solanacearum via in vitro antagonistic assay. A total of 116 endophytic bacteria were isolated, and 55 exhibited abilities to restrain R. solanacearum in vitro. However, only two isolates, UPMBC1 and UPMBE2, significantly inhibited R. solanacearum growth by 14.6 mm and 12.6 mm, respectively. Based on the cultural and morphological characteristics, UPMBC1 and UPMBE2 isolates exhibited similar characteristics as the other members of Enterobacteriaceae and Bacillaceae, respectively. Molecular results revealed that UPMBC1 was identified as Enterobacter tabaci and UPMBE2 as Bacillus cereus. Numerous efficient biological control agents were identified in the present investigation, with E. tabaci showing the greatest potential against R. solanacearum.

##plugins.themes.bootstrap3.article.details##

References
Achari GA, Ramesh R. 2014. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Intl J Microbiol 2014: 296521. DOI: 10.1155/2014/296521.
Artal RB, Gopalakrishnan C, Thippeswamy B. 2012. An efficient inoculation method to screen tomato, brinjal, and chili entries for bacterial wilt resistance. Pest Manage Hortic Ecsyst 18 (1): 70-73.
Bell CR, Dickie GA, Harvey WLG, Chan JWYF. 1995. Endophytic bacteria in grapevine. Can J Microbiol 41 (1): 46-53. DOI: 10.1139/m95-006.
Beveridge TJ. 1999. Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181 (16): 4725-4733. DOI: 10.1128/JB.181.16.4725-4733.1999.
Blomme G, Dita M, Jacobsen KS, Vicente LP, Molina A, Ocimati W, Poussier S, Prior P. 2017. Bacterial diseases of bananas and enset: Current state of knowledge and integrated approaches towards sustainable management. Front Plant Sci 8 (1): 1290. DOI: 10.3389/fpls.2017.01290.
Champoiseau PG, Jones JB, Allen C. 2009. Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate anxieties. Plant Health Prog 10 (1): 1-11. DOI: 10.1094/PHP-2009-0313-01-RV.
Dalsing BL, Allen C. 2014. Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence. J Bacteriol 196 (5): 949-960. DOI: 10.1128/JB.01378-13.
Daunay MC, Janick J. 2007. History and iconography of eggplant. Chron Hortic 47 (3): 16-22.
Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd Allah EF. 2017. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum l.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8: 1887. DOI: 10.3389/fmicb.2017.01887.
Elsayed TR, Jacquiod S, Nour EH, Sørensen SJ, Smalla K. 2020. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front Microbiol 10: 2835. DOI: 10.3389/fmicb.2019.02835.
Hemelda NM, Safitri R, Suhandono S. 2019. Genetic diversity of Ralstonia solanacearum, A phytopathogenic bacterium infecting horticultural plants in Java, Indonesia. Biodiversitas 20: 364-372. DOI: 10.13057/biodiv/d200209.
Hyakumachi M, Nishimura M, Arakawa T, Asano S, Yoshida S, Tsushima S, Takahashi H. 2013. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes Environ 28 (1): 128-134. DOI: 10.1264/jsme2.me12162.
Jabatan Pertanian. 2021. Booklet Statistik Tanaman. Malaysia.
Kageyama K, Nelson EB. 2003. Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69 (2): 1114-1120. DOI: 10.1128/AEM.69.2.1114-1120.2003.
Kazerooni EA, Al-Shibli H, Nasehi A, Al-Sadi AM. 2020. Enterobacter cloacae endofítica exibe atividade antagonista contra a podridão de pepino causada por Pythium. Ciênc Rural 50 (8): e20191035. DOI: 10.1590/0103-8478cr20191035.
Kerksiek K. 2009. Shape matters: Why bacteria care how they look. Infect Res 1 (1): 1-5.
Koch AL. 1998. The biophysics of the Gram-negative periplasmic space. Crit Rev Microbiol 24 (1): 23-59. DOI: 10.1080/10408419891294172.
Liu Y, Kanda A, Yano K, Kiba A, Hikichi Y, Aino M, Kawaguchi A, Mizoguchi S, Nakaho K, Shiomi H, Takikawa Y, Ohnishi K. 2009. Molecular typing of Japanese strains of Ralstonia solanacearum in relation to the ability to induce a hypersensitive reaction in tobacco. J Gen Plant Pathol 75 (5): 369-380. DOI: 10.1007/s10327-009-0188-7.
Loper JE, Ishimaru CA, Carnegie SR, Vanavichit A. 1993. Cloning and characterization of aerobactin biosynthesis genes of the biological control agent Enterobacter cloacae. Appl Environ Microbiol 59 (12): 4189-4197. DOI: 10.1128/aem.59.12.4189-4197.1993.
Lwin M, Ranamukhaarachchi SL. 2006. Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Intl J Agric Biol 8 (5): 657-660.
Milling A, Meng F, Denny TP, Allen C. 2009. Interactions with hosts at cool temperatures, not cold tolerance, explain the unique epidemiology of Ralstonia solanacearum race 3 biovar 2. Phytopathology 99 (10): 1127-1134. DOI: 10.1094/PHYTO-99-10-1127.
Mohamed BFF, Sallam NMA, Alamri SAM, Abo-Elyousr KAM, Mostafa YS, Hashem M. 2020. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt J Biol Pest Control 30 (1): 1-13. DOI: 10.1186/s41938-020-00262-9.
Mondal B, Bhattacharya I, Khatua DC. 2014. Incidence of bacterial wilt disease in West Bengal, India. Acad J Agric Res 2 (6): 139-146. DOI: 10.15413/ajar.2014.0118.
Nair P. 2013. The Agronomy and Economy of Turmeric and Ginger (1st ed). Elsevier, USA. DOI: 10.1016/B978-0-12-394801-4.00001-6.
Philippe N, Pelosi L, Lenski RE, Schneider D. 2009. Evolution of penicillin-binding protein 2 concentration and cell shape during a long-term experiment with Escherichia coli. J Bacteriol 191 (3): 909-921. DOI: 10.1128/JB.01419-08.
Pilizota T, Shaevitz JW. 2014. Origins of Escherichia coli growth rate and cell shape changes at high external osmolality. Biophys J 107 (8): 1962-1969. DOI: 10.1016/j.bpj.2014.08.025.
Popoola AR, Ganiyu SA, Babalola OA, Ayo-John EI, Fajinmi AA, Kehinde IA, Adegboye TH. 2014. Impact of soil amendments and weather factors on bacterial wilt and yield of two tomato cultivars in Abeokuta, Nigeria. S Afr J Plant Soil 31 (4): 195-201. DOI: 10.1080/02571862.2014.966339.
Raza W, Ling N, Yang L, Huang Q, Shen Q. 2016. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6: 24856. DOI: 10.1038/srep24856.
Scherf JM, Milling A, Allen C. 2010. Moderate temperature fluctuations rapidly reduce the viability of Ralstonia solanacearum race 3, biovar 2, in infected geranium, tomato and potato plants. Appl Environ Microbiol 76 (21): 7061-7067. DOI: 10.1128/AEM.01580-10.
Shang XC, Cai X, Zhou Y, Han X, Zhang CS, Ilyas N, Li Y, Zheng Y. 2021. Pseudomonas inoculation stimulates endophytic Azospira population and induces systemic resistance to bacterial wilt. Front Plant Sci 12: 738611. DOI: 10.3389/fpls.2021.738611.
Shen F, Yin W, Song S, Zhang Z, Ye P, Zhang Y, Zhou J, He F, Li P, Deng Y. 2020. Ralstonia solanacearum promotes pathogenicity by utilizing l?glutamic acid from host plants. Mol Plant Pathol 21 (8): 1099-1110. DOI: 10.1111/mpp.12963.
Sousa AM, Machado IM, Nicolau A, Pereira MO. 2013. Improvements on colony morphology identification towards bacterial profiling. J Microbiol Methods 95 (3): 327-335. DOI: 10.1016/j.mimet.2013.09.020.
Stander EIM, Hammes PS, Beyers EA. 2013. Survival of Ralstonia solanacearum biovar 2 in soil under different cropping systems. S Afr J Plant Soil 20 (4): 176-179. DOI: 10.1080/02571862.2003.10634931.
Tahat MM, Sijam K. 2010. Ralstonia solanacearum: The bacterial wilt causal agent. Asian J Plant Sci 9 (7): 385-393. DOI: 10.3923/ajps.2010.385.393.
Tahir HAS, Gu Q, Wu H, Raza W, Safdar A, Huang Z, Rajer FU, Gao X. 2017. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol 17 (1): 133. DOI: 10.1186/s12870-017-1083-6.
Tankeshwar A. 2015. Gram Staining: Principle, procedure, results. https://microbeonline.com/Gram-staining-principle-procedure-results/.
Thurston HD, Galindo JJ. 1989. Moko del banano y el platano. Enfermedades de Cultivos en el Tropico 1 (1): 125-133.
Toyota K, Kimura M, Kinoshita T. 2000. Microbiological factors affecting the colonization of tomato roots by Ralstonia solanacearum YUIRif43lux. Soil Sci Plant Nutr 46 (3): 643-653. DOI: 10.1080/00380768.2000.10409129.
Tuhumury GNC, Hasinu JV, Kesaulya H. 2021. Activity test of Bacillus spp against bacterial wilt (R. solanacearum) on tomatoes by in vitro. IOP Conf Ser: Earth Environ Sci 883 (1): 012027. DOI: 10.1088/1755-1315/883/1/012027.
Walch G, Knapp M, Rainer G, Peintner U. 2016. Colony-PCR Is a rapid method for DNA amplification of Hyphomycetes. J Fungi 2 (2): 12. DOI: 10.3390/jof2020012.
Winstead NN, Kelman A. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42 (11): 628-634.
Xue QY, Chen Y, Li SM, Chen LF, Ding GC, Guo DW, Guo JH. 2009. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48 (3): 252-258. DOI: 10.1016/j.biocontrol.2008.11.004.
Yadessa GB, van Bruggen AHC, Ocho FL. 2010. Effects of different soil amendments on bacterial wilt caused by Ralstonia solanacearum and on the yield of tomato. J Plant Pathol 92 (2): 439-450.
Young KD. 2007. Bacterial morphology: Why have different shapes? Curr Opin Microbiol 10 (6): 596-600. DOI: 10.1016/j.mib.2007.09.009.
Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B. 2012. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167 (7): 388-394. DOI: 10.1016/j.micres.2012.01.003.
Zhuo T, Chen S, Fan X, Hu X, Zou H. 2019. An improved control efficacy against tobacco bacterial wilt by an engineered Pseudomonas mosselii expressing the ripAA gene from phytopathogenic Ralstonia solanacearum. bioRxiv 2019: 510628. DOI: 10.1101/510628.
Zulperi D, Sijam K. 2014. First report of Ralstonia solanacearum race 2 biovar 1 causing Moko disease of banana in Malaysia. Plant Dis 98 (2): 275. DOI: 10.1094/PDIS-03-13-0321-PDN.