Short Communication: Identification of spoilage fungi in Myristica fragrans using DG18 and CYA Media

##plugins.themes.bootstrap3.article.main##

MIFTAHUL HUDA FENDIYANTO
https://orcid.org/0000-0002-0502-2669
RIZKY DWI SATRIO
https://orcid.org/0000-0003-1716-2076
MENTARI PUTRI PRATAMI
ISNA AROFATUN NIKMAH

Abstract

Abstract. Fendiyanto MH, Satrio RD, Pratami MP, Nikmah IA. 2021. Short Communication: Identification of spoilage fungi in Myristica fragrans using DG18 and CYA Media. Asian J Trop Biotechnol 18: 51-54. To date, very few studies have been conducted on the identification of spoilage fungi in Myristica fragrans. Therefore, this study aimed to identify the spoilage fungi in Myristica fragrans growing on DG18 media and CYA Identification Media. Isolation of the fungus was carried out by the dilution plating method using a dilution range of 10-1 to 10-5. The isolation results at 10-2 and 10-3 dilutions on nutmeg (Myristica fragrans) seed samples indicated the presence of Aspergillus niger and A. flavus. The fungal species that can be found and identified using the direct plating method were A. niger, A. flavus, Penicillium citrinum, and Fusarium sp. The results of fungal isolation showed that the species of spoilage fungi on postharvest of M. fragrans seeds, including Aspergillus flavus, A. niger, A. tamarii, Endomyces fibuliger, Eurotium chevalieri, E. repens, and Penicillium citrinum, Trichoderma sp. The highest population of spoilage fungi isolated from Myristica fragrans seeds was Aspergillus niger. This finding indicates that A.niger can be identified as spoilage fungi isolated from Myristica fragrans.

##plugins.themes.bootstrap3.article.details##

References
Addy HS. 2007. Effect of mineral sources on the suppression of Erwinia carotovora by infitro fluor-fluorescent Pseudomonas. Journal HPT Tropika 7(2): 117-124.
Ahmad RZ.2005. Utilization of Saccharomyces cerevisiae yeast for livestock. J Wartazoa. 15(1): 49-56.
Amadi JE, Adeniyi DO. 2009. Mycotoxin production by fungi isolated from stored grains. African J Biotechnol 2(7): 1219-1221.
Ambarwati S, Dharmaputra OS, Retnowati I. 2011. Dietary exposure assessment for aflatoxin B1 from processed peanut products in municipality of Bogor. Biotropia.18(1):1-12.
Aryulina D, Muslim C, Manaf S, Winarni EW. 2005. Biology on Micology. Jakarta (ID): Erlangga.
Astawan M, Kasih AL. 2008. Efficacy of colorful food and the dangers of pathogens in food. Jakarta (ID): Gramedia
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Miftahudin. 2019a. Correlation among Snpb11 markers, root growth, and physiological characters of upland rice under aluminum stress. Biodiversitas 20 (5): 1243-1254. DOI; 10.13057/biodiv/d200514.
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Hanarida I, Miftahudin. 2019b. QTL for aluminum tolerance on rice chromosome 3 based on root length characters. SABRAO J Breed Genet 51 (4): 451-469.
Fendiyanto MH, Satrio RD, Darmadi D. 2020. Metabolic profiling and pathway analysis in red arillus of Salacca sumatrana demonstrate significant pyruvate, sulfur, and fatty acid metabolisms. Biodiversitas 21 (9): 4361-4368. DOI: 10.13057/biodiv/d210955.
Fendiyanto MH, Satrio RD. 2020. Identification, aflatoxin content, and antagonistic test of spoilage fungi in bread to Aspergillus niger. Bioteknologi 17 (2): 60-66. DOI: 10.13057/biotek/c170202.
Fendiyanto MH, Satrio RD, Widana IDKK, Pratami MP, Nikmah IA, Darmadi D. 2021. Differential hierarchical metabolites expression of red/white Salacca sumatrana arillus and its molecular docking studies. Biodiversitas 22 (2): 1014-1024. DOI: 10.13057/biodiv/d220258.Fernando D, Nakkeeran, Zhang Y. 2005. Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant disease. Biocontrol and biofetilization 21(1): 67-109
Gibson AM, Baranyi J, Pitt MJ, Eyles MJ, Robert TA. 1994. Predicting fungal growth: the effect of water activity on Aspergillus flavus and related species. Int. Journal Food Microbiology. 23(7):419-431.
Handewi P, Sallem. 2002. Analysis of food demand in eastern Indonesia. JAE 20(2):64-91
Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. 2007. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. J. Microbiol. 153(10):1677-1692.
Khalimi K, Wirya GN. 2008. Utilization of plant growth-promoting rhizobacteria for biostimulants and bio protectant. Ecotrophic 4(2): 131-135
Marshal J. 2005. Food Source of Energy. Jakarta (ID): Erlangga.
Pitt JI, Hocking AD. 2009. Fungi and Food Spoilage 3th Edition. New York (US): Springer.
Pitt JI, Hocking AD, Glenn DR. 1983. An improve medium for the detection Aspergillus flavus and A.parasiticus. J.Appl.Bacteriol.54:109-114.
Pitt JI, Hocking AD, Samson RA, King AD. 1992. Recommended methods for mycological examination of foods. In Samson RA, Hocking AD, Pitt JI, King AD, editor. Modern Methods in Food Mycology. Amsterdam (LUX): Elsevier.
Satrio RD, Fendiyanto MH, Suharsono, Supena EDJ, Miftahudin. 2019. Identification of drought-responsive regulatory genes by hierarchical selection of expressed sequence tags and their expression under drought stress in rice. Int J Agric Biol 22(6):1524-1532.
Saranraj P, Geetha M. 2011. Microbial spoilage of bakery products and its control by preservatives. International Journal of Pharmaceutical and Biological Arcives 3(1): 38-48.
Zummo N, Scott GE. 1990. Relative aggressiveness of Aspergillus flavus and Aspergillus parasiticus on maize in Mississippi. Plant Diseasse. 74(15): 978-981.