Identification and characterization of strawberry FvGELP1 (Fragaria vesca GDSL esterase/lipase)

##plugins.themes.bootstrap3.article.main##

LUCIA DHIANTIKA WITASARI
FONG-CHIN HUANG
WILFRIED SCHWAB

Abstract


Abstract. Witasari LD, Huang FC, Schwab W. 2022. Identification and characterization of strawberry FvGELP1 (Fragaria vesca GDSL esterase/lipase).Biodiversitas 23: 907-915Fruit softening is primarily the result of the hydrolytic enzymes activity. Esterases are reasonable candidates due to their putative role in cell wall components degradation. This study aimed to identify and characterize a new enzyme related to strawberry fruit ripening. Esterase activity was detected in the native PAGE of protein extract isolated from Fragaria ×ananassared fruit. Amino acid sequence analysis of the protein band revealed several esterases as possible candidates. GDSL esterase/lipase from Fragaria vesca(gene27964; FvGELP1) was chosen for cloning purposes and further analysis. Quantitative RT-PCR of FvGELP1in plant tissues of F. vescaindicated high expression levels in fruit, in particular in early developmental stages. The gene FvGELP1(1,161 bp) was amplified from F. vescafruit cDNA and expressed as a 43 kDa HisTag fusion protein in Saccharomyces cerevisiae.FvGELP1 possesses four conserved residues Gly43-Asp44-Ser45-Asn46. FvGELP1 contains Ser45, Asp364, and His367 as the catalytic triad. Esterase assays of FvGELP1 resulted in high levels of the aromatic alcohol products by applying ?-naphthyl acetate (?NA), p-nitrophenyl acetate (pNPA), phenyl acetate, and benzyl acetate as substrates. It could be suspected that FvGELP1 plays a role in strawberry fruit ripening and might be involved in the hemicellulose degradation, presumably by deacetylation of the polysaccharide.


##plugins.themes.bootstrap3.article.details##

References
Abdelkafi S, Ogata H, Barouh N, Fouquet B, Lebrun R, Pina M, Scheirlinckx F, Villeneuve P, Carrière F. 2009. Identification and biochemical characterization of a GDSL-motif carboxylester hydrolase from Carica papaya latex. Biochim. Biophys. Acta. 1791:1048–1056. doi: 10.1016/j.bbalip.2009.06.002.
Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. 2004. GDSL family of serine esterases/lipases. Prog Lipid Res. 43(6):534-552. doi: 10.1016/j.plipres.2004.09.002
Barnes MF, Patchett BJ. 1976. Cell wall degrading enzymes and the softening of the strawberry fruit. J. Food Sci. 41:1392-1395. doi: https://doi.org/10.1111/j.1365-2621.1976.tb01179.x
Castillejo C, Fuente JI, Pietro Iannetta P, Botella MA, Valpuesta V. 2004. Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot. 55 (398):909-918. doi: 10.1093/jxb/erh102
Chen Y, Usui S, Queener SW. 1995. Purification and properties of ap-nitrobenzyl esterase from Bacillus subtilis . J. Ind. Microbiol. 15:10–18. doi: 10.1007/BF01570007
Clauss K, Baumert A, Nimtz M, Milkowski C, Strack D. 2008. Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J. 53:802–813. doi: 10.1111/j.1365-313X.2007.03374.x
Dalrymple B, Lowry J. 1997. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology. 143:2605-2614. doi: 10.1099/00221287-143-8-2605
Franz-Oberdorf K, Eberlein B, Edelmann K, Bleicher P, Kurze E, Helm D, Olbricht K, Darsow U, Ring J, Schwab W. 2017. White-fruited strawberry genotypes are not per se hypoallergenic. Int. Food Res. J. 100:748-756. doi: 10.1016/j.foodres.2017.07.076
Gabriel, O. 1971. Analytical disc gel electrophoresis. Methods Enzymol. 22: 565-578. doi: https://doi.org/10.1016/0076-6879(71)22041-3
Hamada S, Hasegawa Y, Suzuki Y. 2012. Identification of a GDSL-motif carboxylester hydrolase from rice bran (Oryza sativa L.). J Cereal Sci. 55:100-105.
Härtl K, Denton A, Franz-Oberdorf K, Hoffmann T, Spornraft M, Usadel B, Schwab W. 2017. Early metabolic and transcriptional variations in fruit of natural white-fruited Fragaria vesca genotypes. Sci. Rep. 7: 45113. doi: 10.1038/srep45113
Hong JK, Choi HW, Hwang, IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK. 2008. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta. 227:539-558. doi: 10.1007/s00425-007-0637-5
Kikuta Y, Ueda H, Takahashi M, Mitsumori T, Yamada G, Sakamori K, Takeda K, Furutani S, Nakayama K, Katsuda Y, Hatanaka A, and Matsuda K. 2012. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium-A new target for plant protection. Plant J. 71(2):183-93. doi: 10.1111/j.1365-313X.2012.04980.x
Kram BW, Bainbridge EA, Perera MA, Carter C. 2008. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol. Biol. 68:173–183. doi: 10.1007/s11103-008-9361-1
Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK. 2009. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem. Biophys. Res. Commun. 379:1038-1042. doi: 10.1016/j.bbrc.2009.01.006
Liao Z, Chen M, Guo L, Gong Y, Tang F, et al. 2004. Rapid isolation of high-quality total RNA from taxus and ginkgo. Preparative biochemistry & biotechnology 34(3):209–14 doi: 10.1081/PB-200026790
Ling H, Zhao J, Zuo K, Qiu C, Yao H, Qin J, Sun X, Tang K. 2006. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. J. Biochem. Mol. Biol. 39:297-303. doi: 10.5483/bmbrep.2006.39.3.297
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct method. Methods. 25:402–408. doi: 10.1006/meth.2001.1262
Mølgaard A, Kauppinen S, Larsen S. 2000. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure. 8(4): 373-383. doi: 10.1016/s0969-2126(00)00118-0
Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK. 200. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell. 17:2832-2847. doi: 10.1105/tpc.105.034819
Opazo MC, Figueroa CR, Henríquez J, Herrera R, Bruno C, Valenzuela PDT, Moyaleona MA. 2010. Characterization of two divergent cDNAs encoding xyloglucan endotransglycosylase/hydrolase (XTH) expressed in Fragaria chiloensis fruit. Plant Sci. 179: 479–488. doi: 10.1016/j.plantsci.2010.07.018
Pringle D, Dickstein R. 2004. Purification of ENOD8 proteins from Medicago sativa root nodules and their characterization as esterases, Plant Physiol. Biochem. 42:73-79.
Ring L, Yeh S, Hücherig S, Hoffmann T, Blanco-Portales R, Fouche M, Villatoro C, Denoyes B, Monfort A, Caballero JL, Muñoz-Blanco J, Gershenson J, Schwab W. 2013. Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. Plant Physiol. 163:43–60. doi: 10.1104/pp.113.222778
Rose JKC, Braam J, Fry SC, Nishitani K. 2002. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43:1421–1435. doi: 10.1093/pcp/pcf171
Searle BC. 2010. Scaffold : A bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics, 10(6):1265-1269. doi: 10.1002/pmic.200900437
Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas J.J., Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filich-kin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Fox SE, Givan SA, Wilhelm LJ, Naithani S, ChristoVels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM. 2011. The genome of woodland strawberry (Fragaria vesca). Nat Genet. 43:109–116. doi: 10.1038/ng.740
Soni S, Sathe SS, Odaneth AA, Lali AM. 2017. SGNH hydrolase-type esterase domain containing Cbes-AcXE2: a novel and thermostable acetyl xylan esterase from Caldicellulosiruptor bescii. Extremophiles. 21(4):687-679. doi: 10.1007/s00792-017-0934-2
Upton C, Buckley JT. 1995. A new family of lipolytic enzymes?. Biochem Sci. 20(5):178–179.
Witasari LD, Huang F?C, Hoffmann T, Rozhon W, Fry SC and Schwab. 2019. Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes FvXTH 9 and FvXTH 6 accelerates fruit ripening. Plant J. 100: 1237-1253. doi: 10.1111/tpj.14512.

Most read articles by the same author(s)