Short Communication: Dextran production using Leuconostoc mesenteroides strains isolated from Borassus flabellifer sap

##plugins.themes.bootstrap3.article.main##

ANIK MA'UNATIN
HARIJONO
ELOK ZUBAIDAH
MUHAIMIN RIFA'I

Abstract

Abstract. Ma'unatin A, Harijono, Zubaidah E, Rifa'i M. 2022. Short Communication: Dextran production using Leuconostoc mesenteroides strains isolated from Borassus flabellifer sap. Biodiversitas 23: 1154-1158. Exopolysaccharide (EPS) is a carbohydrate polymer secreted by several bacteria in their growth period, including Lactic Acid Bacteria (LAB). Dextran is a type of EPS produced by Leuconostoc mesenteroides and is used widely in the food and pharmaceutical fields. Therefore, this study aimed to evaluate the potency of two strains of L. mesenteroides isolated from Borassus flabellifer L. (lontar) sap, namely L. mesenteroides N5 and N7 for dextran production using the MRS broth medium supplemented with sucrose at varying concentrations of 5, 10, and 15% (w/v). The results showed that L. mesenteroides N5 produced dextran of 14.53 g/L in medium with 15% sucrose, while L. mesenteroides N7 yielded 13.16 g/L at 10% sucrose. The characteristics of selected dextran showed that it contains 89.93% total carbohydrate, 2.33% protein and has a surface structure with tight pore for dextran N5 while the dextran N7 contains 87.84% total carbohydrates, 2.22% protein and has looser porous surface structure.

##plugins.themes.bootstrap3.article.details##

References
Abid Y, Angela C, Houda G, Ichrak J, Rosa L, Maria MC, Hamadi A, Samia A. 2018. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int J Biol Macromol 108: 719-728. DOI: 10.1016/j.ijbiomac.2017.10.155
Costa NE, Wang L, Auty ME, Hannon JA, McSweeney PLH, Beresford TP. 2012. Rheological, microscopic and primary chemical characterisation of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris DPC6532. Dairy Sci Technol 92: 219-235. DOI: 10.1007/s13594-012-0059-4.
Das D, Baruah R, Goyal A. 2014. A food additive with prebiotic properties of an ?-d-glucan from Lactobacillus plantarum DM5. Int J Biol Macromol 69: 20-26. DOI: 10.1016/j.ijbiomac.2014.05.029.
Diaz-Montes. 2021. Review dextran : sources, structures and properties. Polysacch 2: 554-565. DOI: 10.3390/polysaccharides2030033.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. DOI: 10.1021/ac60111a017.
Farinazzo FS, Valente LJ, Almeida MB, Simionato AS, Fernandes MTC, Mauro CSI, Tomala AAB, Garcia S. 2020. Characterization and antioxidant activity of an exopolysaccharide produced by Leuconostoc pseudomesenteroides JF17 from juçara fruits (Euterpe edulis Martius). Process Biochem 91: 141-148. DOI: 10.1016/j.procbio.2019.12.005.
Feng F, Zhou Q, Yang Y, Zhao F, Du R, Han Y, Xiao H, Zhou Z. 2018. Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int J Biol Macromol 113: 45-50. DOI: 10.1016/j.ijbiomac.2018.02.119.
Han J, Hang F, Guo B, Liu Z, You C, Wu Z. 2014. Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. J Carbohydr Polym 112: 556-562. DOI: 10.1016/j.carbpol.2014.06.035.
Iqbal S, Marchetti R, Aman A, Silipo A, Qader SAU, Molinaro A. 2017. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy. Int J Biol Macromol 103: 744-750. DOI: 10.1016/j.ijbiomac.2017.05.073.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275. DOI: 10.1016/S0021-9258(19)52451-6.
Matsuzaki C, Kamishima K, Matsumoto K, Koga H, Katayama T, Yamamoto K, Hisa K. 2014. Immunomodulating activity of exopolysaccharide-producing Leuconostoc mesenteroides strain NTM048 from green peas. J Appl Microbiol 116 : 980-989. DOI: 10.1111/jam.12411.
Nuwan P, Piwpan P, Jaturapiree A, Jaturapiree P. 2016. Production of dextran by Leuconostoc mesenteroides TISTR 053 In fed batch fermentation. Asia Pac J Sci Technol 21 (2): 366-375. DOI: 10.14456/KKURJ.2016.45.
Saadat YR, Khosroushahi AY, Gargari BP. 2019. Review : A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 217: 79–89. DOI: 10.1016/j.carbpol.2019.04.025.
Saravanan C, Shetty PKH. 2016. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int J Biol Macromol 90: 100-106. DOI: 10.1016/j.ijbiomac.2015.02.007.
Sarwat F, Qader SA, Aman A, Ahmed N. 2008. Production & characterization of a unique destran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 4: 379-386. DOI: 10.7150/ ijbs.4.379.
Seo BJ, Bajpai VK, Rather IA, Park YH. 2015. Partially purified exopolysaccharide from Lactobacillus plantarum YML009 with total Phenolic content, antioxidant, and free radical scavenging efficacy. Indian J Pharm Educ Res 49: 282-292. DOI: 10.5530/IJPER.49.4.6.
Siddiqui NN, Afsheen A, Alba S, Shah AUQ, Antonio M. 2014. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr Polym 99: 331-338. DOI: 10.1016/j.carbpol.2013.08.004.
Singh P, Saini P. 2017. Food and health potentials of exopolysaccharides derived from Lactobacilli. Microbiol Res J Int 22(2): 1-14. DOI: 10.9734/MRJI/2017/36935.
Stepanov NA, Senko OV, Efremenko EN. 2017. Biocatalytic production of extracellular exopolysaccharide dextran synthesized by cells of Leuconostoc mesenteroides. Catal Ind 9(4): 339-343. DOI: 10.18412/1816-0387-2017-2-161-165.
Zhou X, Hong T, Yu Q, Nie S, Gong D, Xiong T, Xie M. 2017. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Sci Rep 7(1): 14247. DOI: 10.1038/s41598-017-14178-2.