Effect of gamma irradiation on the germination, pollen viability, and morpho-agronomic of Pachyrhizus erosus cv. Kota Padang

##plugins.themes.bootstrap3.article.main##

P.K. DEWI HAYATI
SISKA WITARI
NALWIDA ROZEN
SUTOYO
SASANTI WIDIARSIH

Abstract

Abstract. Hayati PKD, Witari S, Rozen N, Sutoyo, Widiarsih S. 2022. Effect of gamma irradiation on the germination, pollen viability, and morpho-agronomic of Pachyrhizus erosus cv. Kota Padang. Biodiversitas 23: 1231-1238. Yam bean or Pachyrhizus erosus (L.) Urb., an unexploited plant that produces the storage root tuber, is used in a variety scale of food processing and cosmetic industries in Indonesia. Novel approaches to induce variability in yam bean cv. Kota Padang will accelerate the breeding efforts and improvement of the cultivar. The purpose of the study was to elucidate the effects of gamma irradiation on seed germinability, pollen viability, and morpho-agronomic performance of yam bean cv. Kota Padang. Seeds were irradiated with gamma-rays on 0, 100, 150, 200, 300, 400, and 500 Gy, then LD50 was determined based on the germination percentage. Observation of the irradiated yam bean growth in the field was carried out individually. Results showed that gamma irradiation decreased seed germinability, pollen viability, and agronomic traits. Still, it increased the variability of the traits among the mutant populations, except for the number of branches. Correlation analysis confirmed the results, indicating that selection in the next M2 generation must consider semi-dwarf and pod yield performances. The LD50 was 150 and 176 Gy; hence, the irradiation doses of 150 and 200 Gy were appropriate in producing high genetic diversity with low physical damage in yam bean cv. Kota Padang.

##plugins.themes.bootstrap3.article.details##

References
Addai IK, Safo-Kantanka O. 2006. Effect of 60Co Gamma-irradiation on storability of soybean seed. Plant Sci 5 (2): 221-225. DOI: 10.3923/ajps.2006.221.225.
Addai IK 2019. Selection in the M2 generation of soybeans (Glycine max (L.) Merill) irradiated with Cobalt-60 gamma irradiation in the Guinea Savannah Agroecology of Ghana. Ghana J Sci Technol Dev 6 (1): 30-37. DOI: 10.47881/127.967x.
Agaba R, Tukamuhabwa P, Rubaihayo P, Tumwegamire S, Ssenyonjo A, Mwanga ROM, Ndirigwe J, Grüneberg WJ. 2016. Genetic variability for yield and nutritional quality in yam bean (Pachyrhizus sp.). Hortscience 51 (9): 1079-1086. DOI: 10.21273/HORTSCI10686-16.
Ahloowalia B, Maluszynski M, Nichterlein K. 2004. Global impact of mutation-derived varieties. Euphytica 135: 187-204. DOI: 10.1023/B:EUPH.0000014914.85465.4f.
Bin D, Dwivedi VK. 2014. Effect of mutagenesis on germination, plant survival and pollen sterility in M1 generation in cowpea (Vigna unguiculata (L.) Walp). Indian J Agric Res 48 (5): 398-401. DOI: 10.5958/0976-058X.2014.01322.5.
Deletre M, Soengas B, Utge J, Lambourdiere J, Sørensen M. 2013. Microsatellite markers for the yam bean Pachyrhizus (Fabaceae). Appl Plant Sci 1 (7): 1200551. DOI:10.3732/apps.1200551.
Denissen CJM, Den Nijs APM. 1987. Effects of gamma irradiation on in vitro pollen germination of different Cucumis species. Euphytica 36: 651-658. DOI: 10.1007/BF00041515.
Falconer DS. 1989. Introduction to Quantitative Genetics. 3rd Edition. Longman, New York.
Gaul H. 1977. Mutagen effects in the first generation after seed treatment. Manual on Mutation Breeding. 2nd Edition. IAEA, Vienna.
Grüneberg WJ. 2016. Enhancing the Nutrient-Rich Yam Bean (Pachyrhizus spp.) Storage Roots to Improve Food Quality and Availability and Sustainability of Farming Systems in Central and West Africa. Final Report. International Potato Center (CIP). Lima, Peru. DOI: 10.4160/9789290604747.
Grüneberg WJ, Goman FD, Velasco L. 1999. Characterization of yam bean (Pachyrhizus spp.) seeds as potential sources of high palmitic acid oil. J Amer Oil Chemists Soc 76 (11): 1309-1312. DOI: 10.1007/s11746-999-0144-x.
Grüneberg WJ, Freynhagen-Leopold P, Delgado-Vâquez O. 2003. A new yam bean (Pachyrhizus spp.) interspeci?c hybrid. Genet Res Crop Evol 50: 757-766. DOI: 10.1023/A:1025007918878.
Hanafiah DS, Trikoesoemaningtyas, Yahya S, Wirnas D. 2010a. Induced mutations by gamma-ray irradiation to Argomulyo soybean (Glycine max) variety. Nusantara Biosci 2 (3): 121-125. DOI: 10.13057/nusbiosci/n020303.
Hanafiah DS, Trikoesoemaningtyas, Yahya S, Wirnas D. 2010b. Agronomic improvement of Argomulyo soybean variety [Glycine max (L) Merr] through induced mutation by gamma irradiation in M1 and M2 generation. Biosfera 27 (3): 103-111. DOI: 10.20884/1.mib.2010.27.3.199.
Harsanti L, Anisyah, Parno and Tarmizi. 2020. The effect of gamma Co 60 radiation on soybean (Glycine max (L.) Merr.) shade tolerants. IOP Conf Ser Earth Environ Sci 518: 012055. DOI:10.1088/1755-1315/518/1/012055.
Hayati PKD. 2018. Analisis Rancangan dalam Pemuliaan Tanaman: Penerapan Statistika dalam Bidang Pemuliaan Tanaman. Universitas Andalas Press, Padang. [Indonesian]
Høgh-Jensen H, Mora AQ, Morera JAM, Sørensen M. 2008. Effect of planting density and prunings on yam bean tuber yields and quality. Res J Agron 2 (2): 56-63.
IAEA Mutant Variety Database. 2021. Available online:http://mvd.iaea.org [accessed on 31 July 2021]
Ji-Min S, Kim B, Seo S, Jeon SB, Kim J, Jun B, Kang S, Lee J, Chung M, Kim S. 2011. Mutation breeding of sweet potato by gamma-ray radiation. Afr J Agr Res 6: 1447-1454. DOI: 10.5897/AJAR10.936.
Jean N, Patrick R, Phenihas T, Rolland A, Placide R, Robert MOM, Silver T, Vestine K, Evrard K, Grüneberg WJ. 2017. Evaluation of performance of introduced yam bean (Pachyrhizus spp.) in three agro-ecological zones of Rwanda. Trop Plant Biol 10: 97-109. DOI: 10.1007/s12042-017-9188-5.
Karuniawan A, Wicaksana N. 2006. Genetic relationships of yam bean Pachyrhizus erosus based on morphological character of flowers and leaves. Bul Agron 34 (2): 98-105. DOI: 10.24831/jai.v34i2.1286.
Khan S, Wani MR. 2005. Genetic variability and correlations studies in chickpea mutants. J Cytol Genet 6: 155-160.
Khan S, Goyal S. 2009. Mutation genetic studies in mungbean IV: Selection of early maturing mutants. Thai J Agr Sci 42 (2): 109-113.
Khursheed S, Raina A, Khan S. 2016. Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Arc Curr Res Intl 4 (1): 1-7. DOI: 10.9734/ACRI/2016/24802.
Kodym A, Afza R, Forster BP, Ukai Y, Nakagawa H, Mba C. 2011. Methodology for physical and chemical mutagenic treatments. In: Shu QY, Forster BP, Nakagawa H (eds.). Plant Mutation Breeding and Biotechnology. FAO/IAEA Programme. DOI 10.1079/9781780640853.0169.
Kusmiyati F, Sutarno, Sas MGA, Herwibawa B. 2018. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings. IOP Conf Ser Earth Environ Sci 102: 012059 DOI: 10.1088/1755-1315/102/1/012059.
Mathusamy A, Jayabalan N. 2002. Effect of mutagens on pollen fertility of cotton (Gossypium hirsutum L.). Indian J Genet 62 (2): 187.
Monica S, Seetharaman N. 2015. Physical and chemical mutagenic effect on pollen fertility in M1 generation of garden bean (Lablab purpureus (L.)) sweet var. typicus cv. CO. Eur J Exp Biol 5 (9): 6-9.
Mudibu J, Nkongolo KKC, Kalonji-Mbuyi A, Kizungu RV. 2012. Effect of gamma irradiation on morpho-agronomic characteristics of soybeans (Glycine max L.). Am J Plant Sci 3: 331-337. DOI: 10.4236/ajps.2012.33039.
Muhammad I, Rafii MY, Nazli MH, Ramle SI, Harun AR, Oladosu Y. 2021. Determination of lethal (LD) and growth reduction (GR) doses on acute and chronic gamma-irradiated bambara groundnut (Vigna subterranea (L.) Verdc.) varieties. J Rad Res App Sci 14 (1): 133-145. DOI: 10.1080/16878507.2021.1883320.
Nilahayati, Nazimah, Handayani RDS, Syahputra J, Rizky M. 2022. Agronomic diversity of several soybean putative mutant lines resulting from gamma-rays irradiationin M6 generation. Nusantara Biosci 14: 34-39. DOI: 10.13057/nusbiosci/n140104.
Nobre DAC, Sediyama CS, Macedo WR, Piovesan ND, Arthur V. 2019. Gamma radiation to produce soybean mutants for better plant performance and chemical composition of seeds. Emirates J Food Agric 31 (7): 511-519. DOI: 10.9755/ejfa.2019.v31.i7.1983.
Nugrahaeni F, Wijayanti R, Notosandjojo YVP. 2013. Effectiveness of mahkota dewa (Phaleria macrocarpa) and bengkuang (Pachyrhizus erosus) seed extracts for controlling fruit pest in cocoa. Biofarmasi 11: 7-12. DOI: 10.13057/biofar/f120102.
Ozdinc N, Yalcin S. 2019. Effect of Gamma Radiation on different soybean varieties (Glycine max L. Merrill) in M1 generation. J Env Agric Sci 19: 01-09.
Ramos-de-la-Peña AM, Renard CM, Wicker L, Contreras-Esquivel JC. 2013. Advances and perspectives of Pachyrhizus spp. in food science and biotechnology. Trends Food Sci Technol 29:44-54. DOI: 10.1016/j.tifs.2012.09.003.
Sangle SM, Mahamune SE, Kharat SN, Kothekar VS. 2011. Effect of mutagenesis on germination and pollen sterility in pigeonpea. Biosci Dis 2 (1): 127-130. DOI:10.13140/2.1.4251.2003.
Sarkar R, Bhowmik A, Kundu A, Dutta A, Nain L, Chawla G, Saha S. 2021. Inulin from Pachyrhizus erosus root and its production intensification using evolutionary algorithm approach and response surface methodology. Carbohydr Polym 251: 117042. DOI: 10.1016/j.carbpol.2020.117042.
Sørensen M. 1996. Yam bean: Pachyrhizus DC. Promoting the Conservation and Use of Underutilized and Neglected Crops 2. International Plant Genetic Resources Institute, Rome, Italy.
Tshilenge-Lukanda L, Kalonji-Mbuyi A, Kongolo KKC, Kizunguet RV. 2013. Effect of gamma irradiation on morpho-agronomic characteristics of groundnut (Arachis hypogaea L.). Am J Plant Sci 4: 2186-2192. DOI: 10.4236/ajps.2013.411271.