Short Communication: Genetic variation of oceanic manta ray (Mobula birostris) based on mtDNA data in the Savu Sea, Indonesia

##plugins.themes.bootstrap3.article.main##

MUHAMMAD DANIE AL MALIK
https://orcid.org/0000-0002-3989-3593
MOCHAMAD IQBAL HERWATA PUTRA
EDY TOPAN
NI PUTU DIAN PERTIWI
ENEX YUNI ARTININGSIH
SILA KARTIKA SARI
SARAH LEWIS
DERTA PRABUNING
ANDRIANUS SEMBIRING

Abstract


Abstract. Malik MDA, Putra MIH, Topan E, Pertiwi NPD, Artiningsih EY, Sari SK, Lewis S, Prabuning D, Sembiring A. 2022. Short Communication: Genetic variation of oceanic manta ray (Mobula birostris) based on mtDNA data in the Savu Sea, Indonesia. Biodiversitas 23: 1700-1706The Savu Sea, one of Indonesia's top conservation priorities, is home to various marine charismatic species, including the oceanic manta ray (Mobula birostris), whose conservation status is currently endangered and is protected by the Indonesian government. However, due to domestic and global demand for its fishery products, as well as shortcomings in fisheries management, this species is still poached and bycaught in the Savu Sea. Understanding their population structure is important to achieve effective conservation and fisheries management strategies that will have a positive impact on preserving their population in this area. This study aims to reveal the genetic variation of oceanic manta rays in the Savu Sea. Thirty samples from three locations in the Savu Sea were successfully preserved from East Flores (24), West Manggarai (4), and Rote Ndao (2) and then analyzed using ND5 locus from Mithocondiral DNA (mtDNA). The result indicated a close genetic relationship between three locations (East Flores, West Manggarai, and Rote Ndao) based on the phylogenetic tree and Analysis of Molecular Variance (AMOVA) result with value of 0.05158 (P-value = 0.62268) indicated as a single population. In conclusion, the findings of this study provide some insight into the possibility of manta ray populations in the Savu Sea having strong connectivity between areas, which is critical information for regulators and managers to integrate conservation and management strategies within the Savu Sea.


##plugins.themes.bootstrap3.article.details##

References
Ari C. 2014. Rapid coloration changes of manta rays (Mobulidae). Biological journal of the Linnean Society 113.1: 180-193. DOI: https://doi.org/10.1111/bij.12321
Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular biology and evolution, 16(1), 37-48. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a026036
Couturier LIE, Marshall AD, Jaine FRA, Kashiwagi T, Pierce SJ, Townsend KA, Weeks SJ, Bennett MB, Richardson AJ. 2012. Biology, ecology and conservation of the Mobulidae. J. Fish Biol. 80, 1075–1119. DOI: https://doi.org/10.1111/j.1095-8649.2012.03264.x
Dharmadi, Fahmi, Satria F. 2015. Fisheries management and conservation of sharks in Indonesia. African journal of marine science, 37(2), 249-258. DOI: https://doi.org/10.2989/1814232X.2015.1045431
Davey JW, Blaxter ML. 2010. RADSeq: next-generation population genetics. Briefings in functional genomics, 9(5-6), 416-423. DOI: https://doi.org/10.1093/bfgp/elq031
Davidson LNK, Krawchuk MA, Dulvy NK. 2015. Why have global shark and ray landings declined: improved management or overfishing? Fish and Fisheries, 17(2), 438-458. DOI: https://doi.org/10.1111/faf.12119
Dewar H. 2002. Preliminary report: Manta harvest in Lamakera. p. Oceanside, USA: Report from the PflegerInstitue of Environmental Research and the Nature Conservancy, 3.
Domingues RR, Garrone?Neto D, Hilsdorf AW, Gadig O. B. 2019. Use of mucus as a non?invasive sampling method for DNA barcoding of stingrays and skates (batoid elasmobranchs). Journal of fish biology, 94(3), 512-516. DOI: https://doi.org/10.1111/jfb.13919
Excoffier L, Lischer HEL. 2010. Arlequin suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564-567. DOI: https://doi.org/10.1111/j.1755-0998.2010.02847.x
Falsenstein J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783-791. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Foale S, Adhuri D, Aliño P, Allison EH, Andrew N, Cohen P, Evans L, Fabinyi M, Fidelman P, Gregory C, Stacey N, Tanzer J, Weeratunge N. 2013. Food security and the coral triangle initiative. Marine Policy, 38, 174-183. DOI: https://doi.org/10.1016/j.marpol.2012.05.033
Graham RT, Witt MJ, Castellanos DW, Remolina F, Maxwell S, Godley BJ, Hawkes LA, 2012. Satellite tracking of manta rays highlights challenges to their conservation. PLoS One 7, 3–8. DOI: https://doi.org/10.1371/journal.pone.0036834
Graham F, Rynne P, Estevanez M, Luo J, Ault JS, Hammerschlag N. 2016.Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Diversity and Distributions, 22(5), 534-546. DOI: https://doi.org/10.1111/ddi.12425
Hale ML, Burg TM, Steeves TE, Poon AF. 2012. Sampling for Microsatellite-Based Population Genetic Studies: 25 to 30 Individuals per Population Is Enough to Accurately Estimate Allele Frequencies. PLoS ONE, 7(9). DOI: https://doi.org/10.1371/journal.pone.0045170
Hall CM. 2010. Tourism and biodiversity: more significant than climate change?. Journal of Heritage Tourism, 5(4), 253-266. DOI: https://doi.org/10.1080/1743873X.2010.517843
Hauser L, Adcock GJ, Smith PJ, Bernal Ramiréz JH, Carvalho GR. 2012. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Natl. Acad. Sci. U.S.A. 99, 11742–11747. doi: 10.1073/pnas.172242899
Hays GC, Mortimer JA, Ierodiaconou D, Esteban N. 2014. Use of long-distance migration patterns of an endangered species to inform conservation planning for the world’s largest marine protected area. Conserv. Biol. 28 (6), 1636–1644. DOI: https://doi.org/10.1111/cobi.12325
Hearn AR, Acuna D, Ketchum JT, Penaherrera C, Green J, Marshall A, Guerrero M, Shillinger G. 2014. Elasmobranchs of the Galapagos Marine Reserve. In: Denkinger, J., Vinueza, L. (Eds.), Galapagos Mar. Reserv. A Dyn. Soc. Syst., pp. 23–59. DOI: https://doi.org/10.1007/978-3-319-02769-2_2
Hickerson MJ, Meyer CP, Moritz C. 2006. DNA barcoding will often fail to discover new animal species over broad parameter space. Syst. Biol. 55, 729– 739. DOI: https://doi.org/10.1080/10635150600969898
Hinojosa-Alvarez S, Walter RP, Diaz-Jaimes P, Galván-Magaña F, Paig-Tran EM. 2016. A potential third manta ray species near the Yucatán Peninsula? Evidence for a recently diverged and novel genetic Manta group from the Gulf of Mexico. PeerJ, 4, e2586. DOI: 10.7717/peerj.2586
Hoffman J, Dasmahapatra K, Amos W, Phillips C, Gelatt TS, Bickham JW. 2009. Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation. Molecular Ecology, 18, 2961–2978. DOI: https://doi.org/10.1111/j.1365-294X.2009.04246.x
Kashiwagi T, Marshall AD, Bennet MB, Ovenden JR. 2012. The genetic signature of recent speciation in manta rays (Manta alfredi and M. birostris). Molecular Phylogentic and Evolution. 64: 212-218. DOI: https://doi.org/10.1016/j.ympev.2012.03.020
Kim KS, Sappington TW. 2013. Microsatellite data analysis for population genetics. In Microsatellites (pp. 271-295). Humana Press, Totowa, NJ. DOI: https://doi.org/10.1007/978-1-62703-389-3_19
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547-1549. DOI: 10.1093/molbev/msy096
Lewis SA, Setiasih N, Fahmi F, Dharmadi D, O'Malley MP, Campbell SJ, Yusuf M, Sianipar AB. 2015. Assessing Indonesian manta and devil ray populations through historical landings and fishing community interviews. PeerJ PrePrints. DOI: 10.7287/peerj.preprints.1334v1
Madduppa HH, Timm J, Kochzius M. 2018. Reduced genetic diversity in the clown anemonefish Amphiprion ocellaris in exploited reefs of Spermonde Archipelago, Indonesia. Frontiers in Marine Science, 5, 80. Doi: https://doi.org/10.3389/fmars.2018.00080
Mastretta?Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC. 2015. Restriction site?associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Molecular ecology resources, 15(1), 28-41. DOI: https://doi.org/10.1111/1755-0998.12291
Moritz C, Cicero C. 2004. DNA barcoding: promise and pitfalls. PLoS Biol 2, e354. Doi: https://doi.org/10.1371/journal.pbio.0020354
O'Malley MP, Townsend KA, Hilton P, Heinrichs S, Stewart JD. 2017. Characterization of the trade in manta and devil ray gill plates in China and South?east Asia through trader surveys. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(2), 394-413. DOI: https://doi.org/10.1002/aqc.2670
Pujolar JM, Schiavina M, Di Franco A, Meli`a P, Guidetti P, Gatto M, De Leo GA, Zane L. 2013. Understanding the effectiveness of marine protected areas using genetic connectivity patterns and Lagrangian simulations. Divers. Distrib. 19 (12), 1531–1542. DOI: https://doi.org/10.1111/ddi.12114
Putman AI, Carbone I. 2014. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and evolution, 4(22), 4399-4428. DOI: doi: 10.1002/ece3.1305
Putra MIH, Lewis SA, Kurniasih EM, Prabuning D, Faiqoh E. 2016. Plankton biomass models based on GIS and remote sensing technique for predicting marine megafauna hotspots in the Solor waters. In IOP Conference Series: Earth and Environmental Science. Vol. 47. No. 1. p. 012015. IOP Publishing. DOI: 10.1088/1755-1315/47/1/012015
Putra MIH, Mustika PLK. 2020. Incorporating in situ prey distribution into foraging habitat modelling for marine megafauna in the Solor waters of the Savu Sea, Indonesia. Aquatic Conservation: marine and freshwater ecosystems, 30(12), 2384-2401.DOI: https://doi.org/10.1002/aqc.3379
Putra MIH, Setyawan E, Laglbauer BJ, Lewis S, Dharmadi D, Sianipar A, Ender I. 2020. Predicting mobulid ray distribution in coastal areas of Lesser Sunda Seascape: Implication for spatial and fisheries management. Ocean & Coastal Management, 198, 105328. DOI: https://doi.org/10.1016/j.ocecoaman.2020.105328
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299-3302. DOI: https://doi.org/10.1093/molbev/msx248
Sahri A, Putra MIH, Mustika PLK., Kreb D, Murk AJ. 2021. Cetacean habitat modelling to inform conservation management, marine spatial planning, and as a basis for anthropogenic threat mitigation in Indonesia. Ocean & Coastal Management, 205, 105555. DOI: https://doi.org/10.1016/j.ocecoaman.2021.105555
Stewart JD, Beale CS, Fernando D, Sianipar AB, Burton RS, Semmens BX, Aburto-Oropeza O. 2016. Spatial ecology and conservation of Manta birostris in the Indo-Pacific. Biological Conservation, 200, 178-183. DOI: https://doi.org/10.1016/j.biocon.2016.05.016
Stewart JD, Hoyos-Padilla EM, Kumli KR, Rubin RD. 2016. Deep-water feeding and behavioral plasticity in Manta birostris revealed by archival tags and submersible observations. Zoology, 119(5), 406-413. DOI: https://doi.org/10.1016/j.zool.2016.05.010
Walsh PS, Metzger DA, Higuchi R. 1991. Chelex-100 as a medium for simple extraction of DNA for PCR based typing from forensic material. Biotechniques 10:506-513. DOI: https://doi.org/10.2144/000114018

Most read articles by the same author(s)