Forage productivity in native grasslands of Haharu Sub-district, East Sumba District, Indonesia

##plugins.themes.bootstrap3.article.main##

BOGARTH K. WATUWAYA
JASMAL A. SYAMSU
BUDIMAN BUDIMAN
DANIEL USENG

Abstract

Abstract. Watuwaya BK, Syamsu JA, Budiman, Useng D. 2022. Forage productivity in native grasslands of Haharu Sub-district, East Sumba District, Indonesia. Biodiversitas 23: 362-1368. The identification and management of native grasslands are important to ensure the availability of beef cattle feed in smallholder farms. This study aims to identify the existing native grasslands in Haharu Sub-district, East Sumba District, East Nusa Tenggara Province, Indonesia and analyze the botanical composition, biomass and the carrying capacity of the native grasslands. We used the combination of remote sensing approach and field survey to identify and measure the productivity of native grasslands. Sentinel 2A imagery was used to identify the area of existing native grasslands using Supervised Classification - Maximum Likelihood method. Meanwhile, the productivity of native grasslands was measured using the Dry Weight Rank method. The results of remote sensing and spatial analysis showed that the existing area of native grasslands in Haharu Sub-district was 324,10 km2 with an Overall Accuracy of 98.63% and Kappa Accuracy of 0.98. The vegetation analysis showed that the botanical composition of native grasslands consisted of grasses 94.42%, legumes 3.55% and weeds 2.07%. The carrying capacity of the studied grassland was 0.68 AU/ha/month in the wet season. In conclusion, the productivity of existing native grasslands in the wet season is still low and special efforts are needed to improve the quality.

##plugins.themes.bootstrap3.article.details##

References
Abd El-Kawy O.R., J.K. Rød., H.A. Ismail., and A.S. Suliman 2011. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. , 31(2), 0–494. doi:10.1016/j.apgeog.2010.10.012
Akiyama T. and Kawamura K. 2006. Grassland degradation in China: Methods of monitoring, management and restoration. Grassland Science 53 (2007) 1–17 © 2007 Blackwell Publishing Ltd doi: 10.1111/j.1744-697X.2007.00073.x
AOAC (Association of Official Analitical Chemist). 1990. Official Methods of Analysis Fifth edition Volume one. Agriculture Chemical; Contaminants: Drugs Arlington Virginia 22201 USA
Bey, A., A. S. Díaz, D. Maniatis, G. Marchi, D. Mollicone, S. Ricci, J. Bastin, R. Moore, S. Federici, M. Rezende, C. Patriarca, R.Turia, G.Gamoga, H.Abe, E.Kaidong and G. Miceli. 2016. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807; doi:10.3390/rs8100807
Clark, M.L. and Mitchell A. T. 2011. Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for Collecting Land-Use/Land-Cover Reference Data. Remote Sensing, 3(3), 601–620. doi:10.3390/rs3030601
Conese, C and Maselli F. 1992. Use of error matrices to improve area estimates with maximum likelihood classification procedures. , 40(2), 113–124. doi:10.1016/0034-4257(92)90009-9
Crowder, L. V. and H. R. Chheda. 1982. Tropical Grassland Husbandry. London and New York: Longmans, pp. 562
Djawa, R. M. ., & Jacob, A. R. P. 2021. Pembangunan Pabrik Tebu Di Kabupaten Sumba Timur: Studi Gerakan Sosial Masyarakat Adat Terkait Penolakan Pembangunan Pabrik Tebu Di Desa Wanga, Kecamatan Umalulu, Kabupaten Sumba Timur. Jurnal Politiconesia, 10 (1), 9–22. Retrieved from http://publikasi.undana.ac.id/index.php/jp/article/view/p331
Fu, Congbin. 2003. Potential impacts of human-induced land cover change on East Asia monsoon. , 37(3-4), 1–. doi:10.1016/s0921-8181(02)00207-2
Gang, C., Zhou W., Chen Y., Wang Z., Sun Z., Li J., Qi. J., and Odeh I. 2014. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ Earth Sci Springer. DOI 10.1007/s12665-014-3322-6
George, M., Nader, G., McDougald, N., Connor, M., and Frost B. 2016. Annual Rangeland Forage Quality. University of California. Agriculture and Natural Resources ANR Publication 8022. DOI: 10.13140/RG.2.1.1538.0569
Guoa, S., Jiang L., Geoffrey Q. P., and Shenc. 2018. Embodied pasture land use change in China 2000-2015: From the perspective of globalization. Land Use Policy doi.org/10.1016/j.landusepol.2018.12.031
Halls, L. K., R. H. Hughes, R. L. Rummel, & B. L. Southwel. 1964. Forage and Cattle Management in Longleaf-Slaash Pine Forest. Farmer’s Bulletin, 2119. US Department of Ag¬riculture, Washington D.C.
Hoekstra, P. 1948. Paardenteelt op het Eiland Soemba. ublished by John Kappee, Batavia [Jakarta], Indonesia
Huang, H., R. David., B. Luigi., Z. Hankui., Y. Lin., K. Sanath., G. Dans., and J.L Jian. 2016. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination. Remote Sensing, 8(10), 873–. doi:10.3390/rs8100873
Jansen, R.J. 2015. Introductory Digital Image Processing, A Remote Sensing Perspective 4th Edition. ISBN-10: 0-1340-5816-X ISBN-13: 978-0-134-05816-0
Juha Pykälä. 2003. Effects of restoration with cattle grazing on plant species composition and richness of semi-natural grasslands. 12(11), 2211–2226. doi:10.1023/a:1024558617080
Kopp, J. C.; McCaughey, W. P.; Wittenberg, K. M. 2003. Yield, quality and cost effectiveness of using fertilizer and/or alfalfa to improve meadow bromegrass pastures. Canadian Journal of Animal Science, 83(2), 291–298. doi:10.4141/A01-074
Kumar S.S., S. Mustak., K. S.Prashant., Srivastava., S. Szabó and T. Islam. 2015. Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Datasets and Geo-information Environ. Process. (2015) 2:61–78 DOI 10.1007/s40710-015-0062-x
Laca and Emilio A. 2009. New Approaches and Tools for Grazing Management. Rangeland Ecology & Management, 62(5), 407–417. doi:10.2111/08-104.1
Mannetje L. t’ and Jones, R.M. Field and Laboratory Methods for Grassland and Animal Production Research. CABI Publishing. CSIRO Tropical Agriculture St Lucia Australia.
McGwire, K. C., Estes, John E., and Star, Jeffrey L. 1996. A comparison of maximum likelihood?based supervised classification strategies. Geocarto International, 11(2), 3–13. doi:10.1080/10106049609354530
Michaud, A., Plantureux, S., Amiaud, B., Carrère, P., Cruz, P., Duru, M., Dury, B., Farruggia, A., Fiorelli, J. L., Kerneis, E., Baumont, R. 2012. Identification of the environmental factors which drive the botanical and functional composition of permanent grasslands. The Journal of Agricultural Science, 150(2), 219–236. doi:10.1017/s0021859611000530
Pornaro, C., Basso, E., and Macolino, S. 2019. Pasture botanical composition and forage quality at farm scale: A case study. Italian Journal of Agronomy, 14(4), 214–221. doi:10.4081/ija.2019.1480
Schuppli, C. A., M. A. G. von Keyserlingk, and D. M. Weary. 2014. Access to pasture for dairy cows: Responses from an online engagement American Society of Animal Science. All rights reserved. J. Anim. Sci. 2014.92:5185–5192 doi:10.2527/jas2014-7725
Small, C., and S, Daniel. 2016. Humans on Earth; Global Extents of Anthropogenic Land Cover from Remote Sensing. Anthropocene, (), S2213305416300339–. doi:10.1016/j.ancene.2016.04.003
Steven, M. D. (1987). Ground truth An underview †. International Journal of Remote Sensing, 8 (7), 1033–1038. doi:10.1080/01431168708954745
Susetyo. 1980. Padang penggembalaan. Departemen Ilmu Makanan Ternak Fakultas Peternakan. Bogor (Indonesia): Institut Pertanian Bogor.
Verma, P., Rubanshi, A., Srivastava, P.K., and Raghubanshi, A. S. 2020. Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Modeling Earth Systems and Environment, 6(2), 1045–1059. doi:10.1007/s40808-020-00740-x
Watuwaya, B K., Syamsu, J A., Budiman., Useng, D. 2020. Analysis of the potential development of beef cattle in East Sumba Regency, East Nusa Tenggara Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 492(), 012153–. doi:10.1088/1755-1315/492/1/012153
Wilson, C., Undi, M., Tenuta, M., Wittenberg, K M., Flaten, D., Krause, D O., Entz, M H., Holley, R., and Ominski, K H. 2010. Pasture productivity, cattle productivity and metabolic status following fertilization of a grassland with liquid hog manure: A three-year study. Canadian Journal of Animal Science, 90(2), 233–243. doi:10.4141/CJAS09037
Zhang, T., Su, J., Liu, C., and Chen, W. 2018. Potential Bands of Sentinel-2A Satellite for Classification Problems in Precision Agriculture. International Journal of Automation and Computing, (), –. doi:10.1007/s11633-018-1143-x
Van Soest, P.J. 1982. Nutritional Ecology of The Ruminant: Ruminant Metabolism, Nutritional Strategies the Cellulolytic Fermentation and Chemistry of Forage and Plant Fiber. Cornell University O & B Books Inc. USA.