Growth and yield of maize in t’sen, a local wisdom of planting in one planting hole, typical cropping pattern of West Timor's




Abstract. Dimu-Heo YH, Indradewa D, Putra ETS, Purwanto BH. 2022. Growth and yield of maize in t’sen, a local wisdom of planting in one planting hole, typical cropping pattern of West Timor's. Biodiversitas 23: 2502-2511. West Timor farmers have a strategy to anticipate the short rainy season and relatively low rainfall, namely planting maize, cowpeas, and pumpkin together in one planting hole, known as the local wisdom t’sen cropping pattern or t’sen. This study aims to study the growth and yield of maize and obtain maize varieties that are adaptive to the t’sen. The research was conducted at the experimental garden of the Faculty of Agriculture, Universitas Gadjah Mada (UGM), Yogyakarta, from April to August 2019. The study was arranged using a split-plot design with three replications. The t’sen as the main plot consisted of: monoculture maize, maize + cowpea, maize + pumpkin, maize + cowpea + pumpkin, while the varieties as sub-plots consisted of local varieties of maize from Kupang, Timor Tengah Selatan (TTS), Timor Tengah Utara (TTU), Malaka, and superior varieties Lamuru, and Pioneer p35. The results showed that all maize varieties experienced decreased growth and production in the t’sen compared to monoculture. The lowest decrease in growth and yield occurred in one planting hole of maize + cowpea, followed by maize + cowpea + pumpkin, and the highest was maize + pumpkin. The TTS and Kupang varieties have the highest average growth and production, which shows their resistance to competition and stress in t’sen.


Badan Pusat Statistik (BPS) NTT. 2018. Jumlah curah hujan menurut kabupaten/kota dan bulan. [Indonesia]
Balai Pengkajian Teknologi Pertanaian (BPTP) NTT. 2018. Secuil info sumberdaya lahan NTT. [Indonesia]
Basuki T, de-Rosari B. 2017. Pemanfaatan kearifan lokal dan teknologi pertanian mendukung pembangunan pertanian wilayah In: Pasandaran E, Syakir M, Heriawan R, Yufdy MP (Eds). Pembangunan Pertanian Wilayah Berbasis Kearifan Lokal dan Kemitraan. IAARD Press. 63-88. Jakarta. [Indonesia]
Choudhary VK, Dixit A, Chauhan BS. 2016. Resource-use maximisation through legume intercropping with maize in the eastern Himalayan region of India. Crop & Pasture Science 67: 508-519.
Dhar PC, Awal MA, Sultan MS, Rana MM, Sarker A. 2013. Interspecific competition, growth and productivity of maize and pea in intercropping mixture. Scientific Journal of Crop Science 2(10): 136-143.
Dong N, Tang MM, Zhang WP, Xing-Guo BXG, Wang Y, Peter CP, Li L. 2018. Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Nature Scientific 8:3110.
Duchene O, Vian JF, Celete F. 2017. Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment, Elsevier Masson 10.1016/j.agee.2017.02.019. hal-02894041.
Edmeades GO, Trevisan W, Prasanna BM, Campos H. 2017. Tropical maize (Zea mays L.). In: Campos H, Caligari PDS (eds) Genetic Improvement of Tropical Crops. Springer, Cham.
Efendi R, Azrai M. 2015. Kriteria indeks toleran jagung terhadap cekaman kekeringan dan nitrogen rendah. In: Muis A, Syafruddin, Bahtiar, Agil M (eds) Peningkatan Peran Penelitian dan Pengembangan Serelia Mendukung Swasembada Pangan; Prosiding Seminar Nasional Serelia. Badan Penelitian dan Pengembangan Pertanian, Maros 30 April 2015 [Indonesia]
Fernandez GCJ. 1992. Effective selection criteria for assesing plant stress tolerance. In: Kuo CG. (ed). Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. AVRDC Publication. Taiwan, 13-16 August 1992.
Fernandez JA, Ciampitti IA. 2021. Corn grain weight: dependence upon nitrogen supply and source-sink relations. Kansas Agricultural Experiment Station Research Reports: Vol. 7: Iss. 5.
Gaitán-Cremaschi D, Klerkx L, Duncan J, et al. 2019. Characterizing diversity of food systems in view of sustainability transitions. A review. Agron. Sustain. Dev. (2019) 39:1.
Gutu T. 2017. Performances of different varieties and population of soybean (Glycine max L.) under intercropping systems with maize (Zea mays L). Adv in Life Sci and Tech. 53: 5-12.
Habte A, Kassa M, Sisay A. 2016. Maize (Zea mays L) - common bean (Phaseolus vulgaris L) intercropping response to population density of component crop in Wolaita zone southern Ethiopia. Journal of Natural Sciences Research 15(6): 69-74.
Hosang EY, Shuterland MW, Dalgliesh NP, Whish JPM. 2010. Agronomic performance of landrace and certified seeds of maize in West Timor, Indonesia. In: Dove H, and Culvenor RA (eds) Food Security from Sustainable Agriculture. Proceedings of the 15th Agronomy Conference. Australian Society of Agronomy, Lincoln New Zealand, 15-18 November 2010.
Jafari A, Paknejad F, Al-Ahmadi MJ. 2009. Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. Int. J. of Plant. Prod. 3(4): 33-38.
Justes E, Bedoussac L, Dordas C et al. 2021. The 4C approach as a way to understand species interactions determining intercropping productivity. Front. Agr. Sci. Eng. July 2021. DOI: 10.15302/J-FASE-2021414
Kapa MJ, Gunawan T, Hardoyo SR. 2017. Sistem pertanian perladangan tebas bakar berbasis kearifan lokal pada wilayah bercurah hujan eratik di Timor Barat. Jurnal Pendidikan Geografi, 4(2): 10-19 [Indonesia]
Kamara YA, Tofa AI, Ademulegun T, Salomon R, Shehu H, Kamai N, Omoigui L. 2019. Maize-soybean intercropping for sustainable intensification of cereal-legume cropping systems in Northern Nigeria. Expl Agric. 55(1): 73-87
Kermah M, Franke AC, Adjei-Nsiah S, Ahiabor BDK, Abaidoo RC, Giller EK. 2018. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agriculture, Ecosystems and Environment 261: 201–210
Kermah M, Franke AC, Ahiabor BDK, Adjei-Nsiah S, Abaidoo RC, Giller EK. 2019. Legume–maize rotation or relay? Options for ecological intensification of smallholder farms in the Guinea savanna of northern Ghana. Expl Agric. 55(5): 673-691.
Liu W, Hou P, Liu G, et al. 2020. Contribution of total dry matter and harvest index to maize grain yield - A multisource data analysis. Food Energy Secur. 00:e256.
Lopez?Ridaura S, Barba?Escoto L, Reyna?Ramirez CA, Sum C, Palacios?Rojas N, Gerard B. 2021. Maize intercropping in the Milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala. Nature Scientific Reports 11:3696.
Matheus R, Basri M, Rompon MS, Neonufa N. 2017. Strategi pengelolaan pertanian lahan kering dalam meningkatkan ketahanan pangan di Nusa Tenggara Timur. Partner 22 (2): 529-541. [Indonesia]
Ngapo TM, Bilodeau P, Arcand Y et al. 2021. Historical indigenous food preparation using produce of the three sisters intercropping system. Foods 10, 524.
Novotny IP, Tittonell P, Fuentes-Ponce MH, Lopez-Ridaura S, Rossing WAH. 2021. The importance of the traditional milpa in food security and nutritional self-sufficiency in the highlands of Oaxaca, Mexico. PLoS ONE 16(2): e0246281.
Palacios-Rojas N, McCulley L, Kaeppler M et al. 2020. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr Rev Food Sci Food Saf. 19: 1809-1834.
Pleasant JMt. 2016. Food yields and nutrient analyses of the three sisters: A haudenosaunee cropping system. Ethnobiology Letters 7(1):87-98.
Ren Y, Zhang L, Yan M et al. 2021. Effect of sowing proportion on above? and below?ground competition in maize–soybean intercrops. Nature Scientific Reports 11:15760.
Rodriquez-Robayo KJ, Mendez-Lopez ME, Molina-Villegas A, Juarez L. 2020. What do we talk about when we talk about milpa? A conceptual approach to the significance, topics of research and impact of the Mayan Milpa system. Journal of Rural Studies 77: 47-54.
Schwalbert R, Amado TJC, Horbe TAN et al. 2018. Corn yield response to plant density and nitrogen: spatial models and yield distribution. Agronomy Journal 10: 1-13.
Silberg TR, Richardson RB, Hockett M, Snapp SS. 2017. Maize-legume intercropping in central Malawi: determinants of practice. Int. J. Agric. Sustain, 15(6): 662-680.
Subagio H, Aqil M. 2013. Pemetaan pengembangan verietas unggul jagung di lahan kering iklim kering. Seminar Nasional Serealia 2013: 11-19. [Indonesia]
Teshome S. 2019. Review on strategy of developing intercropping practices. Int. J. Curr. Res. Aca. Rev. 7(1): 61-67.
Tilman D. 2020. Benefits of intensive agricultural intercropping. Nat. Plants 6, 604–605.
Thilakarathna MS, McElroy MS, Chapagain T, Papadopoulos YA, Raizada MN. 2016. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. Agron. Sustain. Dev. 2016: 36-58.
Wang X, Deng X, Pu T et al. 2017. Contribution of interspecific interactions and phosphorus applicationto increasing soil phosphorus availability in relay intercropping systems. Field Crops Research 204: 12-22.