Genetic diversity of Burmese grape (Baccaurea ramiflora Lour.) cultivars and Ha Chau cultivar identification based on DNA barcodes

##plugins.themes.bootstrap3.article.main##

DODO TAN KHANG
TRAN GIA HUY
NGUYEN PHAM ANH THI
DOAN THI HONG QUYEN
NGUYEN THI BICH NHU
TRAN THANH MEN
TRAN NHAN DUNG

Abstract


Abstract. Khang DT, Huy TG, Thi NPA, Quyen DTH, Nhu NTB, Binh BN, Men TT, Dung TN. 2022. Genetic diversity of Burmese grape (Baccaurea ramifloraLour.) cultivars and Ha Chau cultivar identification based on DNA barcodesBiodiversitas 233513-3520Burmese grape (Baccaurea ramiflora Lour.) is an underutilized fruit tree in the Mekong Delta and has the potential for food sources as well as landscape plants,especially Ha Chau cultivar. It has been considered an indigenous plant in Can Tho city, Vietnam with specific taste. However, their genetic diversity, utilization,and identification have not been dealt with in-depth. This study aimed to characterize genetic diversity among the five cultivars of Burmese grape in the Mekong Delta and to distinguish Ha Chau from other cultivars based on DNA barcodes, namely matK, rbcL, ycf1b, rpoC1, psbK-I, atpF-H,and ITS. DNA of twelve individuals belong to five Burmese grape cultivars was extracted prior to further amplification and sequencing. Sequences were analyzed to detect variable sites and the phylogenetic tree was constructed by the Maximum Likelihood method. Based on substitution sites and indel mutations, the plastid intergenic spacer atpF-H and ycf1b gene reflected the genetic diversity in five Burmese grape cultivars. Moreover, these sequences were valuable DNA barcodes for discrimination of Ha Chau cultivar. In combination of four markers (rbcL, rpoC1, ycf1b, and psbK-I) for phylogenetic construction, our finding revealed that Ha Chau cultivar is closely related to Red cultivar with highly supported bootstrap value of 89%. Such data could be applied for reliable identification of Ha Chau cultivar from other Bramiflora cultivars in plant authentication.


##plugins.themes.bootstrap3.article.details##

References
Chen CR, Wang JH, Zhao KK, Zhu ZX, Wang HF. 2018. Complete plastome sequence of Hydnocarpus hainanensis Merr (Achariaceae): an endemic ‘vulnerable’tree in South China. Mitochondrial DNA B: Resour 3(2): 1042-1043. DOI: https://doi.org/10.1080/23802359.2018.1511853
Daniell H, Wurdack KJ, Kanagaraj A, Lee SB, Saski C, Jansen RK. 2008. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116(5): 723. DOI: 10.1007/s00122-007-0706-y
DeSalle R, Goldstein P. 2019. Review and interpretation of trends in DNA barcoding. Front Ecol Evol 7: 302. DOI: 10.3389/fevo.2019.00302
Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, Cheng T, Guo J, Zhou S. 2015. ycf1, the most promising plastid DNA barcode of land plants. Sci Rep 5(1): 1-5. DOI: https://doi.org/10.1038/srep08348
Hau TV, Quoc LM. 2009. The flowering behavior and fruit development of “Ha Chau” Baccaurea (Baccaurea ramiflora Lour.) in Phong Dien, Can Tho city. CTUJS, 11: 270-277.
Huang XC, Ci XQ, Conran JG, Li J. 2015. Application of DNA barcodes in Asian tropical trees–a case study from Xishuangbanna Nature Reserve, Southwest China. PloS one 10(6): e0129295. DOI: https://doi.org/10.1371/journal.pone.0129295
Jin DM, Wicke S, Gan L, Yang JB, Jin JJ, Yi TS. 2020. The loss of the inverted repeat in the putranjivoid clade of Malpighiales. Front plant sci 11: 942. DOI: 10.3389/fpls.2020.00942
Khadijah A, Ahs M, Sofiah MS, Shukri MM. 2020. Distribution, morphological variations, utilization and conservation of Baccaurea polyneura Hook. f.(Jentik-Jentik) in Malaysia. Malay Nat J 72(3): 267-273.
Kress WJ. 2017. Plant DNA barcodes: applications today and in the future. J Syst Evol 55: 291–307. DOI: 10.1111/jse.12254
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6): 1547. DOI: 10.1093/molbev/msy096.
Rogers SO, Bendich AJ. 1988. Extraction of DNA from plant tissues. In: Plant Molecular Biology Manual. Springer, Dordrecht. DOI: 10.1007/978-94-009-0951-9_6
Santo C, Pereira F. 2018. Identification of plant species using variable length chloroplast DNA sequences. Forensic Sci Int Genet 36: 1-12. DOI: 10.1016/j.fsigen.2018.05.009
Singh HK, Parveen I, Raghuvanshi S, Babbar SB. 2012. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species. BMC res notes 5(1): 1-11. DOI: 10.1186/1756-0500-5-42
Techen N, Parveen I, Pan Z, Khan IA. 2013. DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol, 25: 103-110. DOI: https://doi.org/10.1016/j.copbio.2013.09.010
Vu HT, Vu QL, Nguyen TD, Tran N, Nguyen TC, Luu PN, Le L. 2020. Genetic diversity and identification of Vietnamese Paphiopedilum species using DNA Sequences. Biology 9(1): 9. DOI: https://doi.org/10.3390/biology9010009
Wu F, Ma J, Meng Y, Zhang D, Pascal MB, Luo K, Di H, Guo W, Wang Y, Feng B, Zhang J. 2017. Potential DNA barcodes for Melilotus species based on five single loci and their combinations. Plos one 12(9): e0182693. DOI: https://doi.org/10.1371/journal.pone.0182693
Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S, Davis CC. 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. PNAS 109(43): 17519-17524. DOI: https://doi.org/10.1073/pnas.1205818109
Zhang X, Liu S, Tian Y, Li Y, Zhang J, Wang Z. 2019. The complete chloroplast genome sequence of Flacourtia jangomas. Mitochondrial DNA B: Resour 4(2): 3232-3233. DOI: https://doi.org/10.1080/23802359.2019.1668731