Assessing soil properties in various agroforestry lands in Kuningan District, West Java, Indonesia using Visual Evaluation of Soil Structure (VESS)

##plugins.themes.bootstrap3.article.main##

TEGUH JATI PURNAMA
NURHENI WIJAYANTO
BASUKI WASIS

Abstract

Abstract. Purnama TJ, Wijayanto N, Wasis B. 2022. Assessing soil properties in various agroforestry lands in Kuningan District, West Java, Indonesia using Visual Evaluation of Soil Structure (VESS). Biodiversitas 23: 3012-3021. Land conversion from the forest into intensive agriculture and plantation causes soil degradation. Agroforestry is promoted as a win-win solution to land management that conserves and improves soil quality using a tree-based farming system. This study aimed to evaluate the physical soil quality of various land-use patterns, including agroforestry in Kuningan District, West Java. In doing so, we employed the Visual Evaluation of Soil Structure (VESS) method to be compared with laboratory analysis. Soil physical quality of seven land-use types was evaluated, namely natural forest, complex agroforestry of coffee, complex agroforestry of galangal, simple agroforestry of coffee, simple agroforestry of sweet potato, coffee monoculture and maize monoculture. The VESS technique was used to assess the quality of soil structure, whereas the conventional soil analysis method was used to determine soil bulk density and porosity. Other soil properties including soil organic carbon, cation-exchange capacity (CEC), pH, and soil macrofauna and mesofauna as well as dry litter weight, vegetation composition and individuals’ density were also obtained. The results of the VESS method (reflected as Sq value) revealed that the soil physical quality varied, ranging from Sq value of 1.16-3.1. Complex agroforestry of galangal had Sq value of 1.56 which was not significantly different from that of natural forest land (Sq 1.16), implying that both land uses had a similar physical soil quality. The VESS score and the soil property parameters have a reasonable correlation (r) (BD = 0.80, soil porosity = -0.80, SOC = -0.88, CEC = 0.89, diversity of fauna soil index = 0.82). This study shows that a multi-strata agroforestry system can be a strategy for recovering soil quality on degraded lands, and the VESS method can be used to analyze soil quality in these areas.

##plugins.themes.bootstrap3.article.details##

References
Al-Shammary AAG., Kouzani AZ, Kaynak A, Khoo SY, Norton M, Gates W. 2018. Soil Bulk Density Estimation Methods: A Review. Pedosphere 28(4): 581–596. DOI: 10.1016/S1002-0160(18)60034-7.
Aji BDS, Wijayanto N, Wasis B. 2021. Visual evaluation of soil structure (VESS) method to assess soil properties of agroforestry system in Pangalengan, West Java. Jurnal Manajemen Hutan Tropika 27(2): 80-88. DOI: 10.7226/jtfm.27.2.80.
Anwar EA, Ginting RCB. 2013. Mengenal Fauna Tanah dan Cara Identifikasinya. IAARD Press, Jakarta.
Arévalo-Gardini E, Canto M, Alegre J, Loli O, Julca A, Baligar V. 2015. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of Cacao genotypes in Peruvian Amazon. PLoS ONE 10: e0132147. DOI: 10.1371/journal.pone.0136784.
Asdak C. 2018. Hidrologi dan Daerah Aliran Sungai. Gadjah Mada University Press, Yogyakarta.
Assefa D, Rewald B, Sandén H, Rosinger C, Abiyu A, Yitaferu B, Godbold DL. 2017. Deforestation and land use strongly affect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 153: 89-99. DOI: 10.1016/j.catena.2017.02.003.
Auler AC, Los Galetto S, Hennipman FS, Guntzel ED, Giarola NF, Fonseca AF. 2017. Soil structural quality degradation by the increase in grazing intensity in integrated croplivestock system. Bragantia 76: 550–556. DOI: 10.1590/1678-4499.2016.310.
Ball BC, Batey T, Munkholm LJ. 2007. Field assessment of soil structural quality: a development of the Peerlkamp test. Soil Use Management 23: 329–337. DOI: 10.1111/j.1473-2743.2007.00102.x.
Ball BC, Guimarães RML, Cloy JM, Hargreaves PR, Shepherd G, McKenzie, BM. 2017a. Visual soil evaluation: A summary of some applications and potential developments for agriculture. Soil and Tillage Research 173: 114-124. DOI: 10.1016/j.still.2016.07.006.
Ball BC, Hargreaves PR, Watson CA. 2017b. A framework of connections between and people can help improve sustainability of the food system and soil functions. Ambio 47: 269-283. DOI: 10.1007/s13280-017-0965-z.
B?nemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mãder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L. 2018. Soil quality: a critical review. Soil Biology and Biochemistry 120: 105–125. DOI: 10.1016/j.soilbio.2018.01.030.
Cahyani K, Aminatun T, Putra N. 2017. Struktur komunitas collembolan di lingkungan rhizosfer Chromolaena odorata pada lahan vulkanik, pantai berpasir, dan karst. Jurnal Prodi Biologi 6(8): 455-464.
Cherubin MR, Karlen DL, Franco ALC, Cerri CEP, Tormena CA, Cerri CC. 2016. A soil management assessment framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Science Society of America Journal 80: 215–226. DOI: 10.2136/sssaj2015.09.0328.
Cherubin MR, Franco ALC, Guimarães RML, Tormena CA, Cerri CEP, Karlen DL, Cerri CC. 2017. Assessing soil structural quality under Brazilian sugarcane expansion areas using Visual Evaluation of Soil Structure (VESS). Soil and Tillage Research 173: 64–74. DOI: 10.1016/j.still.2016.05.004.
Cherubin MR., Chavarro-Bermeo JP, Silva-Olaya AM. 2018. Agroforestry systems improve soil physical quality in nothwestern Colombian Amazon. Agroforestry System 93: 1741–1753. DOI: 10.1007/s10457-018-0282-y.
Cui J, Askari MS, Holden NM. 2014. Visual Evaluation of Soil Structure under grassland management. Soil Use Management 30: 1–9. DOI: 10.1111/sum.12100.
De Stefano A, Jacobson MG. 2017. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry System 9: 285–299. DOI: 10.1007/s10457-017-0147-9.
Fahruni. 2017. Karakteristik lahan Agroforestri. Jurnal Daun 4(1): 1-6.
Franco ALC, Bartz MLC, Cherubin MR, Baretta D, Cerri CEP, Feigl BJ., Wall DH., Davies CA, Cerri CC. 2016. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Science of the Total Environment 563–564: 160–168. DOI: 10.1016/j.scitotenv.2016.04.116.
Guimarães RML, Ball BC, Tormena CA, Giarola NFB, da Silva AP. 2013. Relating Visual Evaluation of Soil Structure to other physical properties in soils of contrasting texture and management. Soil and Tillage Research 127: 92–99. DOI: 10.1016/j.still.2012.01.020.
Guimarães RML, Mendonca EDS, Passos RR, Andrade FV. 2014. Soil aggregation and organic carbon of Oxisols under coffee in agroforestry systems. Revista Brasileira de Ciência do Solo 38: 278–287. DOI: 10.1590/S0100-06832014000100028.
Guimarães RML, Lamande´ M, Munkholm LJ, Ball BC, Keller T. 2017a. Opportunities and future directions for visual soil evaluation methods in soil structure research. Soil and Tillage Research 173: 104–113. DOI: 10.1016/j.still.2017.01.016.
Guimarães RML, Neves Junior AF, Silva WG, Rogers CD, Ball BC, Montes CR, Pereira BFF. 2017b. The merits of the Visual Evaluation of Soil Structure method (VESS) for assessing soil physical quality in the remote, undeveloped regions of the Amazon basin. Soil and Tillage Research 173: 75–83. DOI: 10.1016/j.still.2016.10.014.
Gunawan, Wijayanto N, Budi SW. 2018. Karakteristik sifat kimia tanah dan status kesuburan tanah pada agroforestri tanaman sayuran berbasis Eucalyptus sp. Jurnal Silvikultur Tropika 10(2): 63-69. DOI: 10.29244/j-siltrop.10.2.63-69.
Hardjowigeno S. 2015. Ilmu Tanah. Akademika Pressindo. Jakarta.
Husamah, Rahardjanto A, Hudha AM. 2017. Ekologi Hewan Tanah. UMM Press, Malang.
Lehmann A, Zheng W, Rillig MC. 2017. Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1: 1828–1835. DOI: 10.1038/s41559-017-0344-y.
Li H, Yao Y, Zhang X, Zhu H, Wei X. 2020. Changes in soil physical and hydraulic properties following the conversion of forest to cropland in the black soil region of Northeast China. Catena 11(11). DOI: 10.1016/j.catena.2020.104986.
Mindawati, Megawati. 2013. Manual budidaya mahoni (Swietenia macrophylla King.). Badan Penelitian dan Pengembangan Kehutanan, Bogor.
Moncada MP, Gabriels D, Lobo D, Rey JC, Cornelis WM. 2014. Visual field assessment of soil structural quality in tropical soils. Soil and Tillage Research 139: 8–18. DOI: 10.1016/j.still.2014.01.002.
Naharuddin, Wahid A, Rukmi, Sustri. 2019. Erosion hazard assessment in forest and land rehabilitation for managing the Tambun Watershed in Sulawesi, Indonesia. Journal of Chinese Soil and Water Conservation 50(3): 124–130. DOI: 10.29417/JCSWC.201909_50(3).0004.
Paiva IAD, Rita YL, Polizeli KMC. 2020. Knowledge and use of visual soil structure assessment methods in Brazil – A survey. Soil and Tillage Research 204: 104704. DOI: 10.1016/j.still.2020.104704.
Pivic RN, Dinic ZS, Maksimovic JS, Postic DŽ, Strbanovic RT, Stanojkovic, Sebic AB. 2020. Evaluation of trace elements MPC in agricultural soil using organic matter and clay content. Zbornik Matice srpske za prirodne nauke 138: 97-108. DOI: 10.2298/ZMSPN2038097P.
Putri OH, Utami SR, Kurniawan S. 2019. Sifat kimia tanah pada berbagai penggunaan lahan di UB Forest. Jurnal Tanah dan Sumberdaya Lahan 6(1): 1075-1081. DOI: 10.21776/ub.jtsl.2019.006.1.6.
Risman, Ikhsan A. 2017. Penggambaran makrofauna dan mesofauna tanah dibawah tegakan karet (Hevea brazilliensis) di lahan gambut. Jurnal Online Mahasiswa Faperta 4(2): 1-15.
Song W, Liu M. 2017. Farmland conversion decreases regional and national land quality in China. Land Degradation & Development 28(2): 459-471. DOI: 10.1002/ldr.2518.
Suin NM. 2012. Ekologi Hewan Tanah. Bumi Aksara, Bandung.
Tormena CA, Karlen DL, Logsdon S, Cherubin MR. 2016. Visual soil structure effects of tillage and corn stover harvest in Iowa. Soil Science Society of America Journal 80: 720–726. DOI: 10.2136/sssaj2015.12.0425.
Veldkamp E, Schmidt M, Powers JS, Corre MD. 2020. Deforestation and reforestation impacts on soils in the tropics. Nature Reviews Earth & Environment 1-16. DOI: 10.1038/s43017-020-0091-5.
Wiley J, John. 2016. Deep roots and soil structure. Plant, Cell, and Environment 39: 1662?1668. DOI: 10.1111/pce.12684.

Most read articles by the same author(s)

1 2 > >>