Classifying fifty-seven Cucumis (Cucurbitaceae) accessions into six species using leaf architectural traits

##plugins.themes.bootstrap3.article.main##

LAILANI MASUNGSONG
AILENE ALCALA
INOCENCIO E. BUOT JR.
MARILYN M. BELARMINO

Abstract

Abstract. Masungsong LA, Alcala AA, Buot IE Jr., Belarmino MM. 2022. Classifying fifty-seven Cucumis (Cucurbitaceae) accessions into six species using leaf architectural traits. Biodiversitas 23: 4006-4017. In gene banks, there are myriads of accessions that need to be studied, grouped, classified and organized to the proper taxon and hence, be able to manage the accessions efficiently. Using leaf architecture traits, it is the objective of this study to determine the identity and classify the 57 Cucumis accessions in the genebank of Hortanova Farm and Research Center, East-West Seed Company, Inc., Lipa City, Batangas, Philippines.  Five hundred thirteen Cucumis leaf samples across the 57 accessions were collected, measured, thoroughly investigated, and described using leaf architectural characters. Results of leaf architectural analyses focusing on the blade class, apex angle, secondary vein spacing, tertiary vein angle in relation to primary vein, and areole development, revealed that the 57 accessions can be grouped into six (6) species of Cucumis, namely, C. melo subsp. agrestis (Naudin) Pangalo, C. melo var. texanus Naudin, C. melo var. flexuosus (L.) Naudin, C. zambianus Widrl, J.H.Kirkbr., Ghebret. & K.R.Reitsma, C. sativus L., and C. sativus var. hardwickii (Royle) Gabaev. Cucumis sativus and C. sativus var hardwickii were delineated from the rest of the species for having a macrophyll blade class, an odd lobed acute apex angle and an obtuse tertiary vein angle in relation to the primary vein. This delineation is illustrated in the constructed dichotomous botanical key. Utilizing leaf architecture characters is an effective technique to characterize, identify and classify closely related taxa possessing confusing characters.

##plugins.themes.bootstrap3.article.details##

References
Antonio MA, Buot Jr. IE. 2021. Characterization and delineation of two infraspecific taxa of Dioscorea esculenta (Lour.) Burkill: The leaf architecture approach. Biodiversitas 22: 1783-1789
Averion-Masungsong L, Buot, Jr. IE. 2020. Resolving Taxonomic Confusion through Leaf Architecture: The Case of Genus Cucumis L. J New Biol Rep 9(1): 86 – 93.
Baltazar AMP, Buot Jr. IE. 2019. Resolving Taxonomic Confusion between Hoya cumingiana Decne. and Hoya densifolia Turcz. (Apocynaceae) using Leaf Architectural Analysis. The Thail Nat His Mus J 13(2): 77-89
Banaticla MCN, Buot Jr. IE. 2004. Leaf architecture of ten Philippine Psychotria species (Rubiaceae). Philipp. Scient. 41: 74-90.
Baroga JB, Buot Jr. IE. 2014. Leaf architecture of ten species of Philippine Terminalia Linn. (Combretaceae). Int Res J Biol Sci. 3: 83-88.
Borazan A, Babac MT. 2003. Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. Annales Botanici Fennici 40: 233-242.
Buot, Jr. IE. 2020. Leaf Architecture as a Promising Tool in Confirming Identity of Confusing Plant Taxa. Journal of Nature Studies. 19(1), 134-143.
Celadiña DA, Buot Jr. IE, Madulid DA, Evangelista TT, Tandang DA. 2012. Leaf architecture of selected Philippine Cinnamomum Schaeff. (Lauraceae) species. The Thail Nat His Mus J 6: 89-111.
Conda JM, Buot Jr. IE, Escobin RP. 2017. Leaf Architecture of Selected Philippine Diplazium Swartz Species (Athyriaceae). The Thail Nat His Mus J 11(2): 57-75
da Silva NR, Florindo JB, Gomez MC, Rossatto DR, Kolb RM, Bruno OM. 2015. Plant Identification Based on Leaf Midrib Cross-Section Images Using Fractal Descriptors. PLoS ONE 10(6): e0130014. .1371/journal.pone.0130014
Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL. 2009. Manual of Leaf Architecture. The New York Botanical Garden Press, Ithaca, New York.
Gratani L. 2014. Plant Phenotypic Plasticity in Response to Environmental Factors. Advances in Botany. https://doi.org/10.1155/2014/208747
Hickey LJ. 1973. Classification of the architecture of dicotyledonous leaves. Am J Bot 60: 17-33.
Hill RS. 1980. A Numerical taxonomic approach to the study of angiosperm leaves. Bot Gaze 141: 213-229.
Huiet, L, Li, FW, Kao, TT, Prado, J, Smith, AR, Schuettpelz E, Pryer, KM. 2018. A worldwide phylogeny Adiantum (Pteridaceae) reveals remarkable convergent evolution in leaf blade architecture. TAXON 67 (3): 488–502
Inamdar JA, Shenoy KN. 1982. Leaf architecture of Merremia DENNST. ex HALL. f. (Convolvulaceae). Flora 172: 96-104.
Jumawan JH, Buot Jr. IE. 2016. Numerical taxonomic analysis in leaf architectural traits of some Hoya R. BR. species (Apocynaceae) from Philippines. Bangladesh J. Plant Taxon. 23 (2): 199-207.
Kpadehyea J.T, I.E. Buot Jr. 2014. Leaf architecture of two species and nine infraspecific taxa of the Philippine Mussaenda Linn. (Rubiaceae): Conservation concerns. International Research Journal 101 of Biological Sciences 3(10): 13?21.
Laraño AA, Buot Jr. IE. 2010. Leaf architecture of selected species of Malvaceae sensu APG and its taxonomic significance. Philipp J Syst Biol 4: 21-54.
Leaf Architecture Working Group (LAWG). 1999. Manual of Leaf Architecture Morphological Description and Categorization of Dicotyledonous and Net-veined Monocotyledonous angiosperms. Smithsonian Institute, Washington DC.
Masungsong LA, Belarmino MM, Buot Jr. IE. 2019a. Delineation of the selected Cucumis L. species and accessions using leaf architecture characters. Biodiversitas 20: 629-635.
Masungsong LA, Torreta NK, Belarmino MM, Borromeo TH, Buot Jr. IE. 2019b. Leaf Architectural Variations among Species and Accessions of Genus Cucumis L. The Thail Nat His Mus J 13(2): 91-101.
Nandyal SS, Anami BS, Govardhan A. 2013. Base and apex angles and margin types-based identification and classification from medicinal plants’ leaves images. Intl J Comput Vis Robotics 3: 197.
Nelson T, Dengler N. 1997. Leaf vascular pattern formation. Plant Cell 9: 1121-1135.
Paguntalan DP, Buot Jr. IE. 2019. Short Communication: Investigation of leaf architectural patterns: Implications in delineating taxonomically controversial Hoya merrillii Schlechter and Hoya quinquenervia Warburg. Biodiversitas 20: 833-839
Roth-Nebelsick, A., Uhl D, Mosbrugger V, Kerp H. 2001. Evolution and function of leaf venation architecture: A review. Annals of Botany 87(5): 553?566.
Salvaña FRP, Buot Jr. IE. 2014. Leaf architectural study of Hoya coriacea, Hoya halconensis and Hoya buotii (Apocynaceae). Intl Res J Biol Sci 3: 37-44.
Tan JMP, Buot Jr. IE. 2018. Delineating Two Species Hoya benguetensis Schltr. and Hoya ilagiorum Kloppenb., Siar & Cajano (Apocynaceae): A Leaf Architectural Approach. The Thail Nat His Mus J 12(2): 103-109
Torrefiel JT, Buot Jr. IE. 2017. Hoya carandangiana, Hoya bicolensis, and Hoya camphorifolia (Apocynaceae) species delineation: Insights from leaf architecture. Thail Nat His Mus J 11: 35-44.
Viscosi V, Cardini A. 2011. Leaf morphology, taxonomy and geometric morphometrics: A simplified protocol for beginners. PLoS ONE 6: e25630. DOI: 10.1371/journal.pone.0025630.