Construction of CRISPR/Cas9_gRNA-OsCKX2 module cassette and its introduction into rice cv. Mentik Wangi mediated by Agrobacterium tumefaciens

##plugins.themes.bootstrap3.article.main##

MARINA RUZYATI
ATMITRI SISHARMINI
ANIVERSARI APRIANA
TRI JOKO SANTOSO
EDI PURWANTO
SAMANHUDI
AHMAD YUNUS

Abstract

Abstract. Ruzyati M, Sisharmini A, Apriana A, Santoso TJ, Purwanto E, Samanhudi, Yunus A. 2022. Construction of CRISPR/Cas9_gRNA-OsCKX2 module cassette and its introduction into rice cv. Mentik Wangi mediated by Agrobacterium tumefaciens. Biodiversitas 23: 2679-2689. Mentik Wangi is an aromatic superior rice variety from the tropical japonica group with high posture and low productivity. The tall plant posture causes Mentik Wangi rice to be prone to lodging, resulting in yield loss. Therefore, improvement of plant height and productivity of Mentik Wangi is still required. The sd-1 (OsGA20ox-2) and CKX2 genes are responsible for the semi-dwarf character and high productivity. The study aimed to construct a CRISPR/Cas9 cassette module carrying a gRNA of OsCKX2 gene and introduce this construct to Mentik Wangi rice mediated by an Agrobacterium tumefaciens vector strain LBA4404. The introduction of the CRISPR/Cas9_gRNA-GA20ox-2 cassette plasmid that was constructed in previous research into Mentik Wangi rice was also carried out. The results showed that the CRISPR/Cas9_gRNA-CKX2 cassette module had been successfully constructed using the Golden gate cloning method. The introduction of the CRISPR/Cas9_gRNA-CKX2 and CRISPR/Cas9_gRNA-GA20ox-2 cassette modules into Mentik Wangi rice resulted in 30 putative transformant lines that passed the hygromycin selection. PCR analysis showed that from the 30 transformant lines, 15 lines were positive for the hygromycin resistance gene. Further analysis is necessary to be conducted to identify the occurrence of mutagenesis in the OsCKX2 and GA20ox-2 target genes.

##plugins.themes.bootstrap3.article.details##

References
Adik Supriyanti, Supriyanta, & Kristamtini. (2015). Karakterisasi Dua Puluh Padi (Oryza sativa. L.) Lokal di Daerah Istimewa Yogyakarta. Vegetalika, 4(3), 29–41.
Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E. R., Qian, Q., Kitano, H., & Matsuoka, M. (2005). Plant science: Cytokinin oxidase regulates rice grain production. Science, 309(5735), 741–745. https://doi.org/10.1126/science.1113373
Chang, A. Y., Chau, V. W. Y., Landas, J. A., & Pang, Y. (2017). Preparation of calcium competent Escherichia coli and heat-shock transformation. Journal of Experimental Microbiology and Immunology, 1(June), 22–25.
Chu, C.-C., WANG, C.-C., Sun, C.-S., HSU, C., YIN, K.-C., & BI, F.-Y. (1975). Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinica, 18(5), 659–668.
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602–607. https://doi.org/10.1038/nature09886
Deveau, H., Barrangou, R., Garneau, J. E., Labonté, J., Fremaux, C., Boyaval, P., Romero, D. A., Horvath, P., & Moineau, S. (2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology, 190(4), 1390–1400. https://doi.org/10.1128/JB.01412-07
Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J., & Root, D. E. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology, 32(12), 1262–1267. https://doi.org/10.1038/nbt.3026
Fitriyanti, C. S. A., Suharsono, & Santoso, T. J. (2020). Analisis Molekuler dan Fenotipe Galur F 2 Padi Inpari HDB / K15 yang Membawa Gen Mutan sd1 Hasil Pengeditan Genom ( Molecular and Phenotypic Analyses of Inpari HDB / K15 F 2 Lines Containing sd1 Mutant Gene Resulted from Genome Editing Method ). Jurnal AgroBiogen, 16(1), 35–44.
Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158. https://doi.org/https://doi.org/10.1016/0014-4827(68)90403-5
Hiei, Y., & Komari, T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols, 3(5), 824–834. https://doi.org/10.1038/nprot.2008.46
Hirano, K., Ordonio, R. L., & Matsuoka, M. (2017). Engineering the lodging resistance mechanism of post-green revolution rice to meet future demands. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 93(4), 220–233. https://doi.org/10.2183/pjab.93.014
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
Li, S., Zhao, B., Yuan, D., Duan, M., Qian, Q., Tang, L., Wang, B., Liu, X., Zhang, J., Wang, J., Sun, J., Liu, Z., Feng, Y. Q., Yuan, L., & Li, C. (2013). Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 3167–3172. https://doi.org/10.1073/pnas.1300359110
Low, L.-Y. (2018). Transgenic Plants: Gene Constructs, Vector and Transformation Method (S.-K. Yang (ed.); p. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.79369
Manghwar, H., Lindsey, K., Zhang, X., & Jin, S. (2019). CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science, 24(12), 1102–1125. https://doi.org/10.1016/j.tplants.2019.09.006
Marlina, M., Setyono, S., & Mulyaningsih, Y. (2017). Pengaruh Umur Bibit dan Jumlah Bibit terhadap Pertumbuhan dan Hasil Panen Padi Sawah (Oryza sativa) Varietas Ciherang. Jurnal Pertanian, 8(1), 26. https://doi.org/10.30997/jp.v8i1.638
Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3), 733–740. https://doi.org/10.1099/mic.0.023960-0
Ogawa, Y., & Mii, M. (2007). Meropenem and moxalactam: Novel ?-lactam antibiotics for efficient Agrobacterium-mediated transformation. Plant Science, 172, 564–572. https://doi.org/10.1016/j.plantsci.2006.11.003
Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H., & Matsuoka, M. (2014). New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0086870
Santoso, T. J., Trijatmiko, K. R., Char, S. N., Yang, B., & Wang, K. (2020). Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice. IOP Conference Series: Earth and Environmental Science, 482(1). https://doi.org/10.1088/1755-1315/482/1/012027
Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G. S., Kitano, H., & Matsuoka, M. (2002). A mutant gibberellin-synthesis gene in rice: New insight into the rice variant that helped to avert famine over thirty years ago. Nature, 416(6882), 701–702. https://doi.org/10.1038/416701a
Slamet-Loedin, I., Chadha-Mohanty, P., & Torrizo, L. (2014). Agrobacterium-Mediated Transformation: Rice Transformation. Methods in Molecular Biology (Clifton, N.J.), 1099, 261–271. https://doi.org/10.1007/978-1-62703-715-0_21
Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9043–9048. https://doi.org/10.1073/pnas.132266399
Tomita, M., & Ishii, K. (2018). Genetic performance of the semidwarfing allele sd1 derived from a japonica rice cultivar and minimum requirements to detect its single-nucleotide polymorphism by miseq whole-genome sequencing. BioMed Research International, 2018. https://doi.org/10.1155/2018/4241725
Tran, T. N., & Sanan-Mishra, N. (2015). Effect of antibiotics on callus regeneration during transformation of IR 64 rice. Biotechnology Reports, 7, 143–149. https://doi.org/10.1016/j.btre.2015.06.004
Wong, D. W. S. (2016). The ABCs of Gene Cloning, 2nd edition (Vol. 4, Issue 1).
Yulianto, Y. (2017). Ketahanan Varietas Padi Lokal Mentik Wangi Terhadap Penyakit Blas. Journal of Food System & Agribusiness, 1(1), 47–54. https://doi.org/10.25181/jofsa.v1i1.83
Yunus, A., Hartati, S., & Kuneng Brojokusumo, R. D. (2017). Performance Of Mentik Wangi Rice Generation M1 From The Results Of Gamma Ray Irradiation. Agrosains: Jurnal Penelitian Agronomi, 19(1), 6. https://doi.org/10.20961/agsjpa.v19i1.20922
Zafar, K., Sedeek, K. E. M., Rao, G. S., Khan, M. Z., Amin, I., Kamel, R., Mukhtar, Z., Zafar, M., Mansoor, S., & Mahfouz, M. M. (2020). Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns. Frontiers in Genome Editing, 2(June), 1–16. https://doi.org/10.3389/fgeed.2020.00005
Zhu, Z., & Wu, R. (2008). Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides. Plant Science, 174, 519–523. https://doi.org/10.1016/j.plantsci.2008.01.017

Most read articles by the same author(s)

1 2 3 > >>