Phytochemical test and optimization of transdermal patches of Carica papaya extract: Formulation design of candidate drug for wound healing

##plugins.themes.bootstrap3.article.main##

TAHARA DILLA SANTI
TONGKU NIZWAN SIREGAR
AMALIA SUTRIANA
RITA ANDINI
ADITYA CANDRA

Abstract


Abstract. Santi TD, Siregar TN, Sutriana A, Andini R, Candra A. 2022. Phytochemical test and optimization of transdermal patches of Carica papaya extract: Formulation design of transdermal patch as candidate drug for wound healingBiodiversitas 232904-2913Papaya leaves contain metabolite compounds thathave anti-inflammatory and wound-healing properties. This leaf extract as a transdermal patch allows easy application for wound healing. This study aimed to examine the phytochemicals of papaya leaves and determine the formulation of the transdermal patch. This study employed qualitative methods with color testing and quantitative methods with Gas Chromatography-Mass Spectrophotometry (GC-MS) to determine the phytochemical profiles of papaya leaves. The optimization test of patches used Response Surface Methodology with Box-Behnken design on Expert Version 12 software. There were three factors (x) tested in the study, namely PVP, ethyl cellulose, and Ethanol Extract of Papaya Leaves (EECP). There were also three responses (y) investigated, namely thickness, weight, and moisture content. The phytochemical color testingresults revealed the presence of alkaloids, steroid, terpenoid, saponins, flavonoids, phenolic compounds and the GC-MS analysis showed six compounds with the widest areas. From an ANOVA analysist, the p-value was significant (<0.5) while the match value was less significant (p-value >5%). The optimal patch found in this study was the one containing PVP (0.3 mg), ethyl cellulose (0.4 mg), and EECP (0.3 mg). In terms of response values (y), the patch had a ??thickness of 0.25 mm, a weight of 82 mg, and a moisture content of 4.39%.


##plugins.themes.bootstrap3.article.details##

References
Abbiw DK. 1990. Useful plants of Ghana: west african uses of wild and cultivated plants, intermediate technology publications. The Royal Botanical Garden, Kew, London.
Adedayo BC, Oyeleye SI, Okeke BM, and Oboh G. 2020. Anti-cholinesterase and antioxidant properties of alkaloid and phenolic-rich extracts from pawpaw (Carica papaya) leaf: a comparative study. Flavour Fragr J, 36: 1–8.DOI:10.1002/ffj.3615
Barku, VYA. 2019. Wound healing: contributions from plant secondary metabolite antioxidants. In:Dogan KH editor.Available from: https://www.intechopen.com/chapters/63675. DOI:10.5772/intechopen.81208
CandraA, Santi TD. 2017. Efektivitas ekstrak daun pepaya (Carica papaya L) sebagai antiinflamasi.Jurnal Aceh medika. 1(2): 63–66. http://jurnal.abulyatama.ac.id/acehmedika
David SRN, Rajabalaya R, Zhia ES. 2015. Development and in vitro evaluation of self-adhesive matrix-type transdermal delivery system of ondansetron hydrochloride. Trop J Pharm Res, 14(2): 211–18. DOI:10.4314/tjpr.v14i2.4
Gutiérrez A DM, Bah M, Garduño R ML, Mendoza D SO, Serrano CV. 2014. Anti-inflammatory and antioxidant activities of methanol extracts and alkaloid fractions of four Mexican medicinal plants of Solanaceae. Afr J Tradit Complement Altern Med, 11(3): 259–67. DOI:10.4314/ajtcam.v11i3.36
Hamuel JD. 2012. Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. Nigeria: Department of Microbiology School of Pure and Applied Sciences, Federal University of Technology Yola. DOI:10.5772/26052
Hassan HS,Sule MI, Musa AM, Musa KY, Abubakar MS, Hassan AS. 2011. Anti-inflammatory activity of crude saponin extracts from five Nigerian medicinal plants.Afr J Tradit Complement Altern Med, 9(2):250-255. DOI:10.4314/ajtcam.v9i2.10
Hess CT. 2011. Checklist for factors affecting wound healing.Adv Skin Wound Care, 24(4):192. DOI:10.1097/01.ASW.0000396300.04173.ec
JoshiR,Garud N. 2021. Development, optimization and characterization of flurbiprofen matrix transdermal drug delivery system using Box–Behnken statistical design. Future J Pharm Sci,, 7(57). DOI:10.1186/s43094-021-00199-2
Khatoon M, Shah KU, Din FU, Shah SU, Rehman AU, Dilawar N, Khan AN. 2017. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv, 24(1): 56–69.DOI:10.1080/10717544.2017.1384520
Ková?ikA, Kope?ná M, Vávrová K. 2020. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv, 17(2): 145–55. DOI:10.1080/17425247.2020.1713087.
Jimenez VM, Gutierrez-Soto MV, Barboza-Barquero L, Guevara E. 2020. Taxonomy, botany, and plant development. In the papaya: botany, production and uses, ed. Mitra S. CABI. Boston MA. USA
Miladiyah I, Prabowo BR. 2012. Ethanolic extract of Anredera cordifolia (Ten.) steenis leaves improved wound healing in guinea pigs. Univ Med 31(1): 4–11. DOI:10.18051/UnivMed.2012.v31.4-11
Minutti CM, Knipper JA,, Allen JE, Zaiss DM. 2017. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol, 61:3-11. DOI:10.1016/j.semcdb.2016.08006
Mukherjee B, Kanupriya, Mahapatra S, Das S, Patra B. 2005. Sorbitan monolaurate 20 as a potensial skin permeation enhancer in transdermal patches. J Appl Res,5(1):96-108.
NafiuBA, Alli-Oluwafuyi AM, Halimat A. 2019. Papaya (Carica papaya L., pawpaw). In Nonvitamin and Nonmineral Nutritional Supplements, 335-359. DOI:10.1016/B978-0-12-812491-8.00048-5
NandiniG, Gopenath T, Nagalambia P, Kanthesh B. 2020. Phytochemical analysis and antioxidant properties of leaf extracts of Carica papaya. Asian J Pharm Clin res, 13(11):58-62. DOI:10.22159/ajpcr.2020.v13i11.38956
Nijveldt R.J, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. AmJ Clin Nutr 74(4): 418–425. DOI:10.1093/ajcn/74.4.418
NugrohoA, Heryani H, Choi JS, Park HJ. 2016. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac J Trop Biomed 7(3): 208–13. DOI:10.1016/j.apjtb.2016.12.009
Nurhaen, Winarsi D, Ridhay A. 2016. Isolation and identification of chemical components of essential oils from leaves, stems, and flowers of salembangu plants (Melissa sp.). J Natural Sci, 5(2): 149–157.
OramahiHA. 2016. Optimasi dengan RSM dan rancangan (aplikasi dengan SPSS dan SAS). 1st ed. Yogyakarta, Indonesia: Gava Media.
Patel DP, Setty CM, Mistry GN, patel SL,, Patel TJ, Mistry PC, Rana AK, Patel PK, Mishra RS. 2009. Development and evaluation of ethyl cellulose-based transdermal films of furosemide for improved in vitro skin permeation. AAPS PharmSciTech, 10(2): 437–442. DOI:10.1208/s12249-009-9224-3
Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, Yue K, Swieszkowki W, Memic A, Tamayol A, Khademhosseini A. 2018. Drug delivery systems and materials for wound healing applications. AdvDrug Deliv Rev, 1(127): 138–166.DOI:10.1016/j.addr.2018.04.008
Sankarganesh P, Joseph B, Kumar AG, Illanjiam S, Srinivasan T. 2018. Phytomedicinal chemistry and pharmacognostic value of Carica papaya l. leaf. JPAM, 12(2): 751–756. DOI:10.22207/JPAM.12.2.35
Santi TD. 2015. Uji toksisitas akut dan efek antiinflamasi ekstrak metanol dan ekstrak n-heksana daun pepaya (Carica papaya L). PSR, 2(2):101-114. DOI:10.7454/psr.v2i2.3341
Seah BC, Teo BM.. 2018. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine, 13: 7749–7763. DOI:10.2147/IJN.S174759
Sharma A, Puri V, Kumar P, Singh I. 2021. Rifampicin-loaded alginate-gelatin fibers incorporated within transdermal films as a fiber-in-film system for wound healing applications. Membranes, 11(1):7. DOI:10.3390/membranes11010007
Shubham S, Mishra R, Gautam N, Nepal M, Kashyap N, Dutta K. 2019. Phytochemical analysis of papaya leaf extract: screening test. Ec Dental Science, 18(3): 485–90.
Singh A, Bali A. 2016. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J Anal Sci Technol. 7(250: 1–13. doi:10.1186/S40543-016-0105-6
Suryani, Musnina WAOS, Ruslin, Nisa M, Aprianti R, Hasanah M, Putri FR, Adjeng ANT, Yuniar N, Sahumen MH, Aswan M.. 2019. Formulation and physical characterization ofCurcumin nanoparticle transdermal patch.Int J Appl Pharm 11(6): 217-221. DOI: 10.22159/ijap.2019v11i6.34780
Szunerits S, Rabah B. 2018. Heat: a highly efficient skin enhancer for transdermal drug delivery. Frontin Bioeng Biotechnol 6(2): 1–13. DOI:10.3389/fbioe.2018.00015
Tekindal MA, Bayrak H, Ozkaya B, Genc Y. 2012. Box-Behnken experimental design in factorial experiments: the importance of bread for nutrition and health running head. Turkish J. Field Crop 17(2): 422–30.
Zahra A, Kadir F, Abdula M, Mahmood H, Fanous S, Sabri S, Latif I, Ketuly K. 2011. Acute toxicity study and wound healing potential of Gynura procumbens leaf extract in rats. J Med Plant Res, 5(12): 2551–2558.

Most read articles by the same author(s)