Genetic diversity and gain quantitative characters of maize from index-based selection at two dry lands in Lombok, Indonesia

##plugins.themes.bootstrap3.article.main##

I WAYAN SUDIKA
I NYOMAN SOEMEINABOEDHY
I WAYAN SUTRESNA

Abstract


Abstract. Sudika IW, Soemeinaboedhy IN, Sutresna IW. 2023. Genetic diversity and gain quantitative characters of maize from index-based selection at two dry lands in Lombok, Indonesia. Biodiversitas 24: 11-19. Genetic diversity and gain quantitative characters of maize from index-based selection at dry land is poorly reported. This research aims to study the genetic diversity and gain of several traits quantitative of the index-based selection at two dry lands in Amor-Amor and Pererenan, Lombok, Indonesia. A randomized block design with three replications was applied to design the experiment. The materials used is maize from nine populations, namely eight populations from the selection of index-based and one from the initial population. The data were analyzed for variance at the 5% significance level. The results showed that the genetic diversity of yields was categorized as moderate, and the weight of dry cobs harvested per plant was narrow in both locations. The genetic diversity of fresh stover weight per plant in Pererenan was wider than in Amor-Amor, but still in the same category, which was medium. These three traits had a significant genetic gain in the moderate category for both locations, except for the weight of fresh stover per plant, which was high in Pererenan. The dry seed weight per plant had a moderate genetic diversity and gain with a significant positive phenotypic correlation with yield. Yield and fresh stover per plant can still be increased through index-based selection by using dry seed weight per plant and fresh stover per plant in both locations.


##plugins.themes.bootstrap3.article.details##

References
Abdulmalik RO, Menkir A, Meseka SK, Unachukwu N, Ado SG, Olarewaju JD, Aba DA, Hearne S, Crossa J, Gedil M. 2017. Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. Frontiers in Plant Science 8: 1-11. DOI: https://doi.org/10.3389/fpls.2017.00841
Aci MM, Lupini A, Mauceri A, Morsli A, Khelifi L, Sunseri F. 2018. Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC Genetics 19:51. DOI: https://doi.org/10.1186/s12863-018-0655-2
Adhikari BN, Shrestha J, Dhakal B, Joshi BP, Bhatta NR. 2018. Agronomic performance and genotypic diversity for morphological traits among early maize genotypes. International Journal of Applied Biology 2 (2): 33 – 43. DOI: https://doi.org/10.20956/ijab.v2i2.5633.
Admire I, Shayanowako T, Shimelis H, Laing MD, Mwadzingeni L. 2018. Variance components and heritability of traits related to Striga asiatica resistance and compatibility to Fusarium oxysporum F.Sp. Strigae in Maize. Maydica 63 (1): 1-8.
Al-Amin Md, Azad AK Md, Shovon RS, Haque MF. 2019. Genetic variability and character association in maize (Zea mays L.) inbred lines. Turkish Journal of Agriculture - Food Science and Technology 7 (8): 1125 – 1131. DOI: https://doi.org/10.24925/turjaf.v7i8.1125-1131.2306.
Aman J, Bantte K, Alamerew S, Sbhatu DB. 2020. Correlation and path coefficient analysis of yield and yield components of quality protein maize (Zea mays L.) hybrids at Jimma, Western Ethiopia. International Journal of Agronomy 2020: 1-7. DOI: https://doi.org/10.1155/2020/9651537
Amegbor IK, Biljon AV, Shargie N, Tarekegne A, Labuschagne MT. 2022. Heritability and associations among grain yield and quality traits in quality protein maize (QPM) and non-QPM hybrids. Plants 11(6), 713: 1-17. DOI: https://doi.org/10.3390/plants11060713
Amien S, Maulana H, Ruswandi D, Nurjanah S. 2021. Genetic gain and relationship of yield and yield attributes of mutant and cross-bred stevia (Stevia rebaudiana) genotypes. Biodiversitas 22(8): 3119-3126. DOI: https://doi.org/10.13057/biodiv/d220805
Azrai M, Roy E, Suwarti, Pratama RH. 2016. Genetic diversity and agronomic performance of top cross maize hybrid under drought stress. Jurnal Penelitian Pertanian Tanaman Pangan 35 (3): 199-208.
Badu-Apraku B, Obisesan O, Abiodun A, Obeng-Bio E. 2021. Genetic gains from selection for drought tolerance during three breeding periods in extra-early maturing maize hybrids under drought and rainfed environments. Agronomy 11 (5), 831:1-18. DOI: https://doi.org/10.3390/agronomy11050831
Bartaula S, Panthi U, Timilsena K, Acharya SS, Shrestha J, 2019. Variability, heritability, and genetic advance of maize (Zea mays L.) genotypes. Res. Agric. Livest. Fish. 6 (2): 163-169. DOI: https://doi.org/10.3329/ralf.v6i2.42962
Belay N. 2018. Genetic variability, heritability, correlation and path coefficient analysis for grain yield and yield component in maize (Zea mays L.) hybrids. Adv. Crop. Sci. Tech. 6 (5), 399: 2-9. DOI: https://doi.org/10.4172/2329-8863.1000399
Chandana AS, Joel JA, Ravikesavan R, Uma D. 2018. Genetic variability and correlation studies of yield and phytic acid in F2 populations of maize (Zea mays L.) Electronic Journal of Plant Breeding 9(4): 1469-1475. DOI: https://doi.org/10.5958/0975-928X.2018.00182.5
Crevelari JA, Durães NNL, Bendia LCR, Vettorazzi JCF, Entringer GC, Júnior JAF, Pereira MG. 2018. Correlations between agronomic traits and path analysis for silage production in maize hybrids. Bragantia 77 (2): 243-252. DOI: http://dx.doi.org/10.1590/1678-4499.2016512
Dadzie AM, Oppong A, Obeng-Bio E, Warburton ML. 2021. Genetic variation and aflatoxin accumulation resistance among 36 maize genotypes evaluated in Ghana. Cereal Grains 2: 113-116. DOI: https://doi.org/10.5772/intechopen.96461
Dar ZA, Aijaz AA, Gowhar, Ali, Iqbal AM, Asima G. 2015. Variability students in extra early maturing maize (Zea mays L.) hybrids under temperate conditions. Environment & Ecology 33 (4A) : 1713-1715.
de Azeredo AAC, Bhering LL, Brasileiro BP, Cruz CD, Silveira LCI, Oliveira RA, Bespalhok Filho JC, Daros E. 2017. Comparison between different selection indices in energy cane breeding. Genetics and Molecular Research 16 (1): 1-12. DOI: https://doi.org/10.4238/gmr16019535
de Santiago S, de Souza Junior CL, Lemos LB, Môro GV. 2019. Prediction of genetic gain using selection indices in maize lines. African Journal of Agricultural Research 14 (17): 787-793.
Dermail A, Fuengtee A, Lertrat K, Suwarno WB, Lübberstedt T, Suriharn K. 2022. Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand. Agronomy 12 (1), 87: 1-16. DOI: https://doi.org/10.3390/agronomy12010087
Fellahi ZEA, Hannachi A, Bouzerzour H. 2020. Expected genetic gains from mono trait and index-based selection in advanced bread wheat (Triticum aestivum L.) populations. Revista Facultad Nacional de Agronomía Medellín 73 (2): 9131-9141. DOI: https://doi.org/10.15446/rfnam.v73n2.77806.
Ferdoush A, Haque MA, Rashid MM, Bari MAA. 2017. Variability and traits association in maize (Zea mays L.) for yield and yield associated characters. Bangladesh Agricultural University 15 (2): 193–198. DOI: https://doi.org/10.3329/jbau.v15i2.35062
Fitriani R. 2019. Uji Hipotesis Dua Ragam. https://slideplayer.info/slide/16613964/
Freeman TA, Wali MC, Adjei EA, Kollie WS, Pride C. 2019. Genetic variability and divergence studies in maize (Zea mays L.). EC Agriculture 5.6
Giovanny E, Covarrubias-Pazaran. 2020. Genetic gain as a high-level key performance indicator. Excellence in Breeding. Manual/Breeding process assessment.
Golla B, Tadesse B, Chalsisa D, Bayisa E. 2018. Effect of sowing time and environmental variation on yield of differnt maize varieties. Open J Plant Sci 3(1): 041-045. DOI: http://dx.doi.org/10.17352/ojps.000014
Hadi BH, Hassan WA, Hamdalla MSH. 2021. Some genetic parameters and path coefficient of three-way crosses in maize. IOP Conf. Ser.: Earth Environ. Sci. 910 012099. DOI: 10.1088/1755-1315/910/1/012099
Hosang EY, Syamsuddin, Pabendon M, Sutherland M. 2020. Genetic variability in West Timor landrace maize populations. IOP Conf. Ser.: Earth Environ. Sci. 484 012007. DOI: https://doi.org/10.1088/1755-1315/484/1/012007
Jaya KD, Sudirman, Romilawati, Soemeinaboedhy IN, Sudika IW. 2020. Maize yield in a dryland area as affected by rainfall variability. IOP Conf. Ser.: Earth Environ. Sci. 411 012067. DOI:10.1088/1755-1315/411/1/012067
Kamal N, Khanum S, Siddique M, Ahmed MF. 2020. Phenotypic correlation coefficient studies to determine interrelationships among grain yield and related characters in maize. Haya Saudi J Life Sci 5(6): 113-116.
Kandel BP, Adhikari NR, Poudel A, Tripathi MP. 2019. Genetic variability estimates of hybrid maize genotypes in inner terai of Nepal. Azarian Journal of Agricultura 6 (6): 164-170. DOI: http://dx.doi.org/10.29252/azarinj.021.
Kandel BP, Sharma BK, Sharma S, Shrestha J. 2018. Genetic variability, Heritability and Genetic Advance Estimates in Maize (Zea mays L.) Genotypes in Nepal. Agricultura 3-4: 29-35.
Khan AS, Ullah H, Shahwar D, Fahad S, Khan N, Yasir M, Wahid F, Adnan M, Noor M. 2018. Heritability and correlation analysis of morphological and yield traits in maize. J Plant Biol Crop Res. 2018 (2):1-8. DOI:10.33582/2637-7721/1008.
Khan S, Mahmud F. 2021. Genetic variability and character association of yield components in maize (Zea mays L.). American Journal of Plant Science 12(11). DOI: 10.4236/ajps.2021.1211118.
Kurnia HM, Firdaus, Sugiarto S. 2021. Nilai Maksimum dari Koefisien Korelasi. https://repository.unri.ac.id/xmlui/bitstream/handle/123456789/3462/ ARTIKEL%20HANGGA%20MULA%20KURNIA.pdf?sequence=1&isAllowed=y.
Lamichhane S, Adhikari NR, Bishwas KC, Thapa S. 2021. Estimating variability, heritability, and genetic advance of rice genotypes in mid-hills of Nepal. Indonesian Journal of Agricultural Science 22 (2): 92–101.
Lubis K, Sutjahyo SH, Syukur M, Trikoesoemaningtyas. 2014. Pendugaan parameter genetik dan seleksi karakter morfofisiologi galur jagung introduksi di lingkungan tanah masam. Penelitian Pertanian Tanaman Pangan 33(2): 122-128.
Magar BT, Achrya S, Gyawali B, Timilsena K, Upadhayaya J, Shrestha J. 2021. Genetic variability and trait association in maize (Zea mays L.) varieties for growth and yield traits. Heliyon 7 (9): E07939. DOI: https://doi.org/10.1016/j.heliyon.2021.e07939
Meiryani. 2021. Memahami Koefisien Determinasi Dalam Regresi Linear. https://accounting.binus.ac.id/2021/08/12/memahami-koefisien-determinasi-dalam-regresi-linear/
Mogesse W. 2021. Correlation and path coefficient analysis for grain yield and yield related trait of maize (Zea mays L.) inbreed lines. International Journal of Current Research and Academic Review 9 (02): 138-150.
Musundire L, Derera J, Dari S, Tongoona P. 2019. Genetic variation and path coefficient analysis of introgressed maize inbred lines for economic traits. Journal of Agricultural Science 11(17): 135-149.
Oloyede-Kamiyo QO. 2019. Efficiency of index-based selection methods for stem borer resistance in maize (Zea mays L.). Journal of Crop Science and Biotechnology 22: 205-211. DOI: https://doi.org/10.1007/s12892-017-0130-0
Padjung R, Farid M, Musa Y, Anshori MF, Nur A, Andi M. 2021. Drought-adapted maize line based on morphophysiological selection index. Biodiversitas 22 (9): 4028-4035. DOI: 10.13057/biodiv/d220951
Paiman. 2019. Teknik Analisis Korelasi Dan Regresi Ilmu-Ilmu Pertanian. Universitas PGRI Yogyakarta, Yogyakarta.
Rachman F, Trikoesoemaningtyas, Wirnas D, Reflinur. 2022. Estimation of genetic parameters and heterosis through line × tester crosses of national sorghum varieties and local Indonesian cultivars. Biodiversitas 23 (3): 1588-1597. DOI: https://doi.org/10.13057/biodiv/d230349
Rai R, Khanal P, Chaudhary P, Dhital R. 2021. Genetic variability heritability and genetic advance for growth, yield and yield related traits in maize genotypes. Journal of Agriculture and Applied Biology 2(2): 96-104. DOI: https://doi.org/10.11594/jaab.02.02.04
Rutkoski JE. 2019. Estimation of realized rates of genetic gain and indicators for breeding program assessment. Crop Science 59: 981-993. DOI: https://doi.org/10.1101/409342
Sadimantara GR, Yusuf DN, Febrianti E, Leomo S, Muhidin. 2021. The performance of agronomic traits, genetic variability, and correlation studies for yield and its components in some red rice (Oryza sativa) promising lines. Biodiversitas 22 (9): 3994-4001. DOI: https://doi.org/10.13057/biodiv/d220947
Silva MF, Maciel GM, Finzi RR, Peixoto JVMP, Rezende WS, Castoldi R. 2020. Selection indexes for agronomic and chemical traits in segregating sweet corn populations. Horticultura Brasileira 38 (1): 71-77. DOI: https://doi.org/10.1590/S0102-053620200111
Smiderle EC, Furtini IV, da Silva CSC, Botelho FBS, Resende MPM, Botelho RTC, Filho JMC, de Castro AP, Utumi MM. 2019. Index selection for multiple traits in upland rice progenies. Revista de Ciências Agrárias 42(1): 4-12.DOI: https://doi.org/10.19084/RCA18059
Streck EA, Aguiar GA, de Magalhães Júnior AM, Facchinello PHK, de Oliveira AC. 2017. Selection indices for agronomic traits in segregating populations of soybean. Revista Ciência Agronômica 48 (1): 110-117. DOI: https://doi.org/10.5935/1806-6690.20170012
Sudika IW, Parwata IGMA, Soemeinaboedhy IN. 2018. Indirect mass selection response to the yield after seven cycles on dry land. Jurnal Sains Teknologi & Lingkungan 4 (2): 144-152. DOI: https://doi.org/10.29303/jstl.v4i2.91
Sudika IW, Soemeinaboedhy IN, Parwata IGMA. 2019. Seleksi massa guna memperoleh varietas unggul jagung tahan kering, umur panen super genjah, hasil dan brangkasan segar tinggi. Laporan Hasil Penelitian Tahun Ketiga (Unpublish). 74 p.
Taiwo OP, Nwonuala AI, Foby IB. 2020. Variability in yield and yield components of selected pro-vitamin a maize (Zea mays L.) variety in a humid environment of Port Harcourt, Nigeria. Asian Journal of Agricultural dan Horticultural Research 5 (3): 1-10. DOI: DOI: 10.9734/ajahr/2020/v5i330051
Venmuhil R, Sassikumar D, Vanniarajan C, Indirani R. 2020. Selection indices for improving the selection efficiency of rice genotypes using grain quality traits. Electronic Journal of Plant Breeding 11 (2): 543-549. DOI: https://doi.org/10.37992/2020.1102.091
Yahaya MS, Bello I, Unguwanrimi AY. 2021. Correlation and path-coefficient analysis for grain yield and agronomic traits of maize (Zea Mays L.). Science World Journal 16 (1): 10-13.
Yali W. 2022. Review of the genetic variability in maize genotypes (Zea mays L). Plant 10(1): 1-7.
Zankrut G. 2021. Data Analysis with Selection Index. https://cran.rproject.org/web/packages/selection.index/vignettes/Examples.html